Vision-Based Uncertainty-Aware Lane Keeping Strategy Using Deep Reinforcement Learning

2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Myounghoe Kim ◽  
Joohwan Seo ◽  
Mingoo Lee ◽  
Jongeun Choi

Abstract Recent deep learning techniques promise high hopes for self-driving cars while there are still many issues to be addressed such as uncertainties (e.g., extreme weather conditions) in learned models. In this work, for the uncertainty-aware lane keeping, we first propose a convolutional mixture density network (CMDN) model that estimates the lateral position error, the yaw angle error, and their corresponding uncertainties from the camera vision. We then establish a vision-based uncertainty-aware lane keeping strategy in which a high-level reinforcement learning policy hierarchically modulates the reference longitudinal speed as well as the low-level lateral control. Finally, we evaluate the robustness of our strategy against the uncertainties of the learned CMDN model coming from unseen or noisy situations, as compared to the conventional lane keeping strategy without taking into account such uncertainties. Our uncertainty-aware strategy outperformed the conventional lane keeping strategy, without a lane departure in our test scenario during high-uncertainty periods with random occurrences of fog and rain situations on the road. The successfully trained deep reinforcement learning agent slows down the vehicle speed and tries to minimize the lateral error during high uncertainty situations similarly to what human drivers would do in such situations.

2021 ◽  
Vol 13 (3) ◽  
pp. 1566
Author(s):  
Rong-Chang Jou ◽  
Ming-Che Chao

Introduction—Medical emergency vehicles help patients get to the hospital quickly. However, there were more and more ambulance crashes on the road in Taiwan during the last decade. This study investigated the characteristics of medical emergency vehicle crashes in Taiwan from January 2003 to December 2016. Methods—The ordered logit (OL) model, multinominal logit (MNL) model, and partial proportional odds (PPO) model were applied to investigate the relationship between the severity of ambulance crash injuries and its risk factors. Results—We found the various factors have different effects on the overall severity of ambulance crashes, such as ambulance drivers’ characteristics and road and weather conditions. When another car was involved in ambulance crashes, there was a disproportionate effect on the different overall severity, as found by the PPO model. Conclusions—The results showed that male ambulance drivers and car drivers who failed to yield to an ambulance had a higher risk of severe injury from ambulance crashes. Ambulance crashes are an emerging issue and need further policies and public education regarding Taiwan’s ambulance transportation safety.


Author(s):  
Yuki Okafuji ◽  
Takahiro Wada ◽  
Toshihito Sugiura ◽  
Kazuomi Murakami ◽  
Hiroyuki Ishida

Drivers’ gaze behaviors in naturalistic and simulated driving tasks have been investigated for decades. Many studies focus on driving environment to explain a driver’s gaze. However, if there is a great need to use compensatory steering for lane-keeping, drivers could preferentially acquire information directly required for the task. Therefore, we assumed that a driver’s gaze behavior was influenced not only by the environment but also the vehicle position, especially the lateral position. To verify our hypothesis, we carried out a long-time driving simulator experiment, and the gaze behaviors of two participating drivers were analyzed. Results showed that gaze behavior—the fixation distance and the lateral deviation of the fixation—was influenced by the lateral deviation of the vehicle. Consequently, we discussed processes that determined drivers’ gaze behaviors.


2003 ◽  
Vol 1855 (1) ◽  
pp. 121-128 ◽  
Author(s):  
S. P. Hoogendoorn ◽  
H. J. Van Zuylen ◽  
M. Schreuder ◽  
B. Gorte ◽  
G. Vosselman

To gain insight into the behavior of drivers during congestion, and to develop and test theories and models that describe congested driving behavior, very detailed data are needed. A new data-collection system prototype is described for determining individual vehicle trajectories from sequences of digital aerial images. Software was developed to detect and track vehicles from image sequences. In addition to longitudinal and lateral position as a function of time, the system can determine vehicle length and width. Before vehicle detection and tracking can be achieved, the software handles correction for lens distortion, radiometric correction, and orthorectification of the image. The software was tested on data collected from a helicopter by a digital camera that gathered high-resolution monochrome images, covering 280 m of a Dutch motorway. From the test, it was concluded that the techniques for analyzing the digital images can be applied automatically without much problem. However, given the limited stability of the helicopter, only 210 m of the motorway could be used for vehicle detection and tracking. The resolution of the data collection was 22 cm. Weather conditions appear to have a significant influence on the reliability of the data: 98% of the vehicles could be detected and tracked automatically when conditions were good; this number dropped to 90% when the weather conditions worsened. Equipment for stabilizing the camera—gyroscopic mounting—and the use of color images can be applied to further improve the system.


Author(s):  
Jing Zhou ◽  
Huei Peng

A feedforward/feedback control model of drivers’ lane keeping behavior is presented in this paper. The model is based on the linearized analysis of the driver’s curve negotiation dynamics. In real driving, the driver previews the upcoming road geometry and relies on perceived vehicle states to maintain a desired lateral position. Feedforward and feedback roles are associated with different perceptual cues, and the lane keeping task is formulated into a disturbance rejection problem. Control parameters are determined to reflect natural stable human characteristics. Verification tests in a realistic simulation environment demonstrate the ability of the model to generate driver/vehicle lane keeping responses comparable to those obtained on a simulator. Potentially, the derived control algorithm can also be applied to automatic lane-tracking as long as reliable information regarding vehicle states and upcoming road conditions is accessible.


2020 ◽  
Vol 63 (3) ◽  
pp. 549-556
Author(s):  
Yanxiang Yang ◽  
Jiang Hu ◽  
Dana Porter ◽  
Thomas Marek ◽  
Kevin Heflin ◽  
...  

Highlights Deep reinforcement learning-based irrigation scheduling is proposed to determine the amount of irrigation required at each time step considering soil moisture level, evapotranspiration, forecast precipitation, and crop growth stage. The proposed methodology was compared with traditional irrigation scheduling approaches and some machine learning based scheduling approaches based on simulation. Abstract. Machine learning has been widely applied in many areas, with promising results and large potential. In this article, deep reinforcement learning-based irrigation scheduling is proposed. This approach can automate the irrigation process and can achieve highly precise water application that results in higher simulated net return. Using this approach, the irrigation controller can automatically determine the optimal or near-optimal water application amount. Traditional reinforcement learning can be superior to traditional periodic and threshold-based irrigation scheduling. However, traditional reinforcement learning fails to accurately represent a real-world irrigation environment due to its limited state space. Compared with traditional reinforcement learning, the deep reinforcement learning method can better model a real-world environment based on multi-dimensional observations. Simulations for various weather conditions and crop types show that the proposed deep reinforcement learning irrigation scheduling can increase net return. Keywords: Automated irrigation scheduling, Deep reinforcement learning, Machine learning.


2011 ◽  
Vol 138-139 ◽  
pp. 146-152
Author(s):  
Guo He Guo ◽  
Yu Feng Bai ◽  
Tao Wang

Based on the significant destructive effect of heavy vehicle on uneven roads, two simplified models of pavement unevenness and vehicle dynamic load were established in accordance with D'A lembert principle, and Matlab software was used to analyze the changing law of dynamic load under the conditions of different road unevenness, vehicle speed and load. The results show that vehicles running on uneven road may produce more cumulative damages than static load, and DLC (dynamic load coefficient) changes in wide range, maximum up to 2.0 or more; the effect of speed and load on dynamic load is complex, and due to multi-factor interaction, DLC doesn’t consistently increase or decrease with speed and load increasing. Although the dynamic load level caused by high-speed heavy vehicle is not necessarily too high, its impact on the road can not be ignored.


Sign in / Sign up

Export Citation Format

Share Document