Convective Cooling of Compact Electronic Devices via Liquid Metals with Low Melting Points

2021 ◽  
Author(s):  
Guilin Liu ◽  
Jing Liu

Abstract The increasingly high power density of today's electronic devices requires the cooling techniques to produce highly effective heat dissipation performance with as little sacrifice as possible to the system compactness. Among the currently available thermal management schemes, the convective liquid metal cooling provides considerably high performance due to their unique thermal properties. This paper firstly reviews the studies on convective cooling using low-melting-point metals published in the past few decades. A group of equations for the thermophysical properties of In-Ga-Sn eutectic alloy is then documented by rigorous literature examination, following by a section of correlations for the heat transfer and flow resistance calculation to partially facilitate the designing work at the current stage. The urgent need to investigate the heat transfer and flow resistance of forced convection of low-melting-point metals in small/mini-channels, typical in compact electronic devices, is carefully argued. Some special aspects pertaining to the practical application of this cooling technique, including the entrance effect, mixed convection, and compact liquid metal heat exchanger design, are also discussed. Finally, future challenges and prospects are outlined.

Author(s):  
Gopinath R. Warrier ◽  
Y. Sungtaek Ju ◽  
Jan Schroers ◽  
Mark Asta ◽  
Peter Hosemann

In response to the DOE Sunshot Initiative to develop low-cost, high efficiency CSP systems, UCLA is leading a multi-university research effort to develop new high temperature heat transfer fluids capable of stable operation at 800°C and above. Due to their operating temperature range, desirable heat transfer properties and very low vapor pressure, liquid metals were chosen as the heat transfer fluid. An overview of the ongoing research effort is presented. Development of new liquid metal coolants begins with identification of suitable candidate metals and their alloys. Initial selection of candidate metals was based on such parameters as melting temperature, cost, toxicity, stability/reactivity Combinatorial sputtering of the down selected candidate metals is used to fabricate large compositional spaces (∼ 800), which are then characterized using high-throughput techniques (e.g., X-ray diffraction). Massively parallel optical methods are used to determine melting temperatures. Thermochemical modeling is also performed concurrently to compliment the experimental efforts and identify candidate multicomponent alloy systems that best match the targeted properties. The modeling effort makes use of available thermodynamic databases, the computational thermodynamic CALPHAD framework and molecular-dynamics simulations of molten alloys. Refinement of available thermodynamics models are performed by comparison with available experimental data. Characterizing corrosion in structural materials such as steels, when using liquid metals, and strategies to mitigate them are an integral part of this study. The corrosion mitigation strategy we have adopted is based on the formation of stable oxide layers on the structural metal surface which prevents further corrosion. As such oxygen control is crucial in such liquid metal systems. Liquid metal enhanced creep and embrittlement in commonly used structural materials are also being investigated. Experiments with oxygen control are ongoing to evaluate what structural materials can be used with liquid metals. Characterization of the heat transfer during forced flow is another key component of the study. Both experiments and modeling efforts have been initiated. Key results from experiments and modeling performed over the last year are highlighted and discussed.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 4
Author(s):  
Ping-Hei Chen ◽  
Hyung Cho

Innovative and high-end techniques have been recently developed in academic institutes and are gradually being employed in our daily lives for improving living quality, namely, artificial intelligence (AI) technology, autonomous cars, hyper-loop for high-speed transportation, miniaturization of electronic devices, heat dissipation from cooling films to outer space, and so on [...]


Author(s):  
G. A. Sorokin ◽  
G. P. Bogoslovskaya ◽  
E. F. Ivanov ◽  
A. P. Sorokin

Boiling experiments on eutectic sodium-potassium alloy in the model of fast reactor subassembly under conditions of low-velocity circulation carried out at the IPPE call for further investigations into numerical modeling of the process. The paper presents analysis of pin bundle liquid metal boiling, stages of the process, its characteristics (wall temperature, coolant temperature, flow rate. pressure void fraction and others), that allowed the pattern map to be drawn. The problem of conversion of the data gained in Na-K mock-up experiments to in-pile sodium reactor operating conditions is analyzed here, as well as thermodynamic similarity of liquid metal coolants and eutectic Na-K alloy. Data on bundle boiling in Na-K are presented in comparison with those in different liquid metals. Analysis of data on liquid metal heat transfer in cases of pool boiling, boiling in tubes, in slots, and in pin bundles, as well as data on critical heat flux in tubes was performed and discussed in the paper. The relationship for calculation of critical heat flux in liquid metal derived by the authors is presented. Results of numerical modeling of liquid metal boiling heat transfer during accident cooling of reactor core applied to experimental conditions of going from forced to natural circulation are presented, too.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2797 ◽  
Author(s):  
Hongli Zhang ◽  
Tiezhu Shi ◽  
Aijie Ma

The boosting of consumer electronics and 5G technology cause the continuous increment of the power density of electronic devices and lead to inevitable overheating problems, which reduces the operation efficiency and shortens the service life of electronic devices. Therefore, it is the primary task and a prerequisite to explore innovative material for meeting the requirement of high heat dissipation performance. In comparison with traditional thermal management material (e.g., ceramics and metals), the polymer-based thermal management material exhibit excellent mechanical, electrical insulation, chemical resistance and processing properties, and therefore is considered to be the most promising candidate to solve the heat dissipation problem. In this review, we summarized the recent advances of two typical polymer-based thermal management material including thermal-conduction thermal management material and thermal-storage thermal management material. Furtherly, the structural design, processing strategies and typical applications for two polymer-based thermal management materials were discussed. Finally, we proposed the challenges and prospects of the polymer-based thermal management material. This work presents new perspectives to develop advanced processing approaches and construction high-performance polymer-based thermal management material.


Author(s):  
Wei Tong

Heat sinks have been widely used in electronic industry to maintain the operation temperatures of electronic devices lower than their allowable values and thus are often critical to the device performance and life. However, it is difficult to design heat sinks to satisfy all design specifications optimally under complex heat transfer phenomena. The present work discloses a new design of heat sinks to improve heat dissipation capability for electric motor control devices. The heat sink contains a plurality of raindrop-shaped pin fins, acting as vortex generators to increase the rate of heat transfer and in turn, to increase the cooling efficiency of the heat sinks. Numerical results have shown that with the new designed heat sinks, the maximum temperature can reduce about 30% over the conventional heat sinks.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Yuanchen Hu ◽  
Md Obaidul Hossen ◽  
Zhimin Wan ◽  
Muhannad S. Bakir ◽  
Yogendra Joshi

Abstract Three-dimensional (3D) stacked integrated circuit (SIC) chips are one of the most promising technologies to achieve compact, high-performance, and energy-efficient architectures. However, they face a heat dissipation bottleneck due to the increased volumetric heat generation and reduced surface area. Previous work demonstrated that pin-fin enhanced microgap cooling, which provides fluidic cooling between layers could potentially address the heat dissipation challenge. In this paper, a compact multitier pin-fin single-phase liquid cooling model has been established for both steady-state and transient conditions. The model considers heat transfer between layers via pin-fins, as well as the convective heat removal in each tier. Spatially and temporally varying heat flux distribution, or power map, in each tier can be modeled. The cooling fluid can have different pumping power and directions for each tier. The model predictions are compared with detailed simulations using computational fluid dynamics/heat transfer (CFD/HT). The compact model is found to run 120–600 times faster than the CFD/HT model, while providing acceptable accuracy. Actual leakage power estimation is performed in this codesign model, which is an important contribution for codesign of 3D-SICs. For the simulated cases, temperatures could decrease 3% when leakage power estimation is adopted. This model could be used as electrical-thermal codesign tool to optimize thermal management and reduce leakage power.


Author(s):  
Wadim Jaeger ◽  
Wolfgang Hering ◽  
Nerea Diez de los Rios ◽  
Antonio Gonzalez

The validation of system codes like TRACE is an ongoing task especially in areas with limited or almost no application like liquid metal flow. Therefore, extensive validation efforts are necessary to increase the confidence in the code predictions. TRACE has been successfully validated and applied to lead-alloy cooled systems. The results gained with lead-alloy coolants could be extrapolated to other liquid metals with the necessary care. Nevertheless, dedicated investigations with the different liquid metals are mandatory to confirm the extrapolations. In the present case, the validation work focuses on liquid metal heat transfer in pipes and rod bundles under forced convection. To take advantage of a greater data base, several liquid metals have been implemented into the code. In addition, new coolants allow supporting analysis of liquid metals loops which are in the design or construction stage. Concerning the validation, several experiments have been found, conducted by other investigators, which are modeled with the modified TRACE version. The results indicate that the chosen heat transfer models for pipe and bundle flow are applicable. In case of deviations, physical sound reasons can be provided to explain them.


Sign in / Sign up

Export Citation Format

Share Document