Improved Heat Dissipation Capability on Electronic Motor Control Devices

Author(s):  
Wei Tong

Heat sinks have been widely used in electronic industry to maintain the operation temperatures of electronic devices lower than their allowable values and thus are often critical to the device performance and life. However, it is difficult to design heat sinks to satisfy all design specifications optimally under complex heat transfer phenomena. The present work discloses a new design of heat sinks to improve heat dissipation capability for electric motor control devices. The heat sink contains a plurality of raindrop-shaped pin fins, acting as vortex generators to increase the rate of heat transfer and in turn, to increase the cooling efficiency of the heat sinks. Numerical results have shown that with the new designed heat sinks, the maximum temperature can reduce about 30% over the conventional heat sinks.

2021 ◽  
Vol 1163 ◽  
pp. 73-88
Author(s):  
Md Tanbir Sarowar

Microchannel heat sink plays a vital role in removing a considerable amount of heat flux from a small surface area from different electronic devices. In recent times, the rapid development of electronic devices requires the improvement of these heat sinks to a greater extent. In this aspect, the selection of appropriate substrate materials of the heat sinks is of vital importance. In this paper, three boron-based ultra-high temperature ceramic materials (ZrB2, TiB2, and HfB2) are compared as a substrate material for the microchannel heat sink using a numerical approach. The fluid flow and heat transfer are analyzed using the finite volume method. The results showed that the maximum temperature of the heat source didn’t exceed 355K at 3.6MWm-2 for any material. The results also indicated HfB2 and TiB2 to be more useful as a substrate material than ZrB2. By applying 3.6 MWm-2 heat flux at the source, the maximum obtained surface heat transfer coefficient was 175.2 KWm-2K-1 in a heat sink having substrate material HfB2.


Fins or heat sinks are meant for boosting heat transfer. Therefore, planned computations remain fortified for examining the impacts of SSF pin fin on thermal dispersal concerning constant thermal value 6 W/cm2 . For that SSF pin fins materials of stainless steel and aluminum are preferred. Usual convective equations are solved to foretell thermal apprehensions. As anticipated, for both the stated SSF pin fins, temperature and heat flux declines for increasing length scales. Additionally, temperature distributions on SSF aluminum pin fin lays beneath SSF stainless steel pin fin. Hence, heat dissipation from SSF aluminum pin fin is relatively higher. Obviously, it may be owing to quite higher thermal conductivity of SSF aluminum pin fin. Consequently, it delivers higher, gregarious and remarkable thermal behaviors. Nevertheless, both simulation forecasts remain analogous with one another.


2020 ◽  
Vol 38 (1A) ◽  
pp. 105-112
Author(s):  
Ibtisam A. Hasan ◽  
Sahar R. Fafraj ◽  
Israa A. Mohmmad

Heat sinks are low cost, the process of manufacturing reliability, and design simplicity which leads to taking into consideration various cutting-edge applications for heat transfer. Like stationary, fuel cells, automotive electronic devices also PV panels cooling and other various applications to improve the heat sinks thermal performance. The aim is to focus on some countless fundamental issues in domains such as; mechanics of fluids and heat transfer, sophisticated prediction for temperature distribution, high heat flux removal, and thermal resistance reduction. The outcome of this survey concluded that the best configuration of heat sinks has a thermal resistance about (0.140 K/W to 0.250 K/W) along with a drop of pressure less than (90.0 KPa) with a temperature gradient about 2 °C/mm. Heat sinks with square pin fins lead to enhance the effectiveness of heat dissipation than heat sinks with microcolumn pin fins. While other researches recommend the use of high conductive coating contains nano-particles. The present survey focuses on the researches about future heat sink with micro fin and the development to resolve the fundamental issues. The main benefits and boundaries of micro fins heat sink briefed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2286
Author(s):  
Jan Kominek ◽  
Martin Zachar ◽  
Michal Guzej ◽  
Erik Bartuli ◽  
Petr Kotrbacek

Miniaturization of electronic devices leads to new heat dissipation challenges and traditional cooling methods need to be replaced by new better ones. Polymer heat sinks may, thanks to their unique properties, replace standardly used heat sink materials in certain applications, especially in applications with high ambient temperature. Polymers natively dispose of high surface emissivity in comparison with glossy metals. This high emissivity allows a larger amount of heat to be dissipated to the ambient with the fourth power of its absolute surface temperature. This paper shows the change in radiative and convective heat transfer from polymer heat sinks used in different ambient temperatures. Furthermore, the observed polymer heat sinks have differently oriented graphite filler caused by their molding process differences, therefore their thermal conductivity anisotropies and overall cooling efficiencies also differ. Furthermore, it is also shown that a high radiative heat transfer leads to minimizing these cooling efficiency differences between these polymer heat sinks of the same geometry. The measurements were conducted at HEATLAB, Brno University of Technology.


2021 ◽  
Author(s):  
Guilin Liu ◽  
Jing Liu

Abstract The increasingly high power density of today's electronic devices requires the cooling techniques to produce highly effective heat dissipation performance with as little sacrifice as possible to the system compactness. Among the currently available thermal management schemes, the convective liquid metal cooling provides considerably high performance due to their unique thermal properties. This paper firstly reviews the studies on convective cooling using low-melting-point metals published in the past few decades. A group of equations for the thermophysical properties of In-Ga-Sn eutectic alloy is then documented by rigorous literature examination, following by a section of correlations for the heat transfer and flow resistance calculation to partially facilitate the designing work at the current stage. The urgent need to investigate the heat transfer and flow resistance of forced convection of low-melting-point metals in small/mini-channels, typical in compact electronic devices, is carefully argued. Some special aspects pertaining to the practical application of this cooling technique, including the entrance effect, mixed convection, and compact liquid metal heat exchanger design, are also discussed. Finally, future challenges and prospects are outlined.


Author(s):  
Ali Radwan ◽  
Meshack Hawi ◽  
Mahmoud Ahmed

In this study, an efficient cooling technique for concentrator photovoltaic (CPV) cells is proposed to enhance the system electrical efficiency and extend its lifetime. To do this, a comprehensive three-dimensional conjugate heat transfer model of CPV cells layers coupled with the heat transfer and fluid flow model inside jet impingement heat sink is developed. Four different jet impingement designs are compared. The investigated designs are (A) central inlet jet, (B) Hypotenuse inlet jet, (C) staggered inlet jet, and (D) conventional jet impingement design with side drainage. The effect of coolant flowrate on the CPV/T system performance is investigated. The model is numerically simulated and validated using the available experiments. The performance of CPV system is investigated at solar concentration ratios of 20 and coolant flowrate up to 6000g/min. It is found that increasing the flowrate from 60 g/min to 600 g/min decrease the maximum cell temperature by 31°C for the configuration D while increasing the flowrate from 600 g/min to 6000 g/min reduce the cell temperature by 20.2°C. It is also concluded that at a higher flowrate of 6000g/min, all the investigated configurations relatively achieve better temperature uniformity with maximum temperature differences of 0.9 °C, 2.1 °C, 3.6 °C, and 3.9 °C for configurations A, B, C, and D respectively.


Heat sinks or fins stand deployed for enhancing heat transfer. That’s why, planned experiments remain fortified for examining the impacts of SSF pin fin on thermal dispersal concerning constant thermal value 6 W/cm2 . For that five chromel-alumel thermocouples are preferred, above and beyond, SSF pin fins materials of stainless steel and aluminum. As anticipated, for both the stated SSF pin fins, temperature declines for increasing length scale. Besides, both results are comparable with each other. However, temperature distributions over SSF aluminum pin fin declines relatively at faster rate comparable to that over SSF stainless steel pin fin. Obviously, it may be owing to higher thermal conductivity of SSF aluminum pin fin. Therefore, it carries superior, pleasant and momentous thermal performances.


Author(s):  
Mohd. S. Aris ◽  
Ieuan Owen ◽  
Chris. J. Sutcliffe

This paper is concerned with convective heat transfer enhancement of heated surfaces through the use of vortex generators and flow control devices. A preliminary proof-of-concept investigation has been carried out into the use of active vortex generators and flow control elements, both manufactured from Shape Memory Alloys (SMAs) which are activated at set temperatures. The vortex generators change their shape to intrude further into the flow at high temperature to enhance heat transfer, while they maintain a low profile at low temperatures to minimise flow pressure losses. One set of vortex generators was made from pre-alloyed powders of SMA material in an advanced rapid prototyping process known as Selective Laser Melting (SLM). Another set of devices was also made from commercially available flat annealed thin SMA sheets for comparison purposes. The flow control elements are devices that preferentially guide the flow to heated parts of a surface, again using temperature-activated SMAs. Promising results were obtained for both the vortex generator and flow control device when their temperatures were varied from 20° to 85°C. The vortex generators responded by increasing their angle of attack from 20° to 35° while the wavy flow control elements straightened out at higher temperatures. As the designs were two-way trained, they regain their initial position and shape at a lower temperature. The surface temperature of the heated plate on which the active devices were positioned reduced between 8 to 51%, indicating heat transfer enhancement due to the generated vortices and changes in air flow rates.


2019 ◽  
Vol 29 (8) ◽  
pp. 2545-2565
Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Ake Sunden

Purpose The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs). Design/methodology/approach This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers. Findings The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins. Originality/value VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.


Author(s):  
Ridha Djebali ◽  
Abdallah Jaouabi ◽  
Taoufik Naffouti ◽  
Said Abboudi

Purpose The purpose of this paper is to carry out an in-depth analysis of heat dissipation performance by natural convection phenomenon inside light-emitting diode (LED) lamps containing hot pin-fins because of its significant industrial applications. Design/methodology/approach The problem is assimilated to heat transfer inside air-filled rectangular cavity with various governing parameters appraised in ranges interesting engineering application and scientific research. The lattice Boltzmann method is used to predict the dynamic and thermal behaviors. Effects of monitoring parameters such as Rayleigh number Ra (103-106), fin length (0-0.25) and its position, pin-fins number (1-8), the tilting-angle (0-180°) and cavity aspect ratio Ar (0.25-4) are carried out. Findings The rising behaviors of the dynamic and thermal structures and heat transfer rate (Nu), the heatlines distribution and the irreversibility rate are appraised. It was found that the flow is constantly two contra-rotating symmetric cells. The heat transfer is almost doubled by increasing Ra. A lack of cooling performance was identified between Ar = 0.5 and 0.75. The inclination 45° is the most appropriate cooling case. At constant Ra, the maximum stream-function and the global entropy generation remain almost unchanged by increasing the pin number from 1 to 8 and the entropy generation is of thermal origin for low Ra, so that the fluid friction irreversibility becomes dominant for Ra larger than 105. Research limitations/implications Improvements may include three-dimensional complex geometries, accounting for thermal radiation, high unit power and turbulence modelling. Such factors effects will be conducted in the future. Practical implications The cooling performance/heat dissipation in LED lamps is a key manufacturing factors, which determines the lifetime of the electronic components. The best design and installation give the opportunity to increase further the product shelf-life. Originality/value Both cooling performance, irreversibility rate and enclosure configuration (aspect ratio and inclination) are taken into account. This cooling scheme will give a superior operating mode of the hot components in an era where energy harvesting, storage and consumption is met with considerable attention in the worldwide.


Sign in / Sign up

Export Citation Format

Share Document