Intervertebral Disc Mechanics With Nucleotomy: Differences Between Simple and Dual Loading

2021 ◽  
Vol 143 (8) ◽  
Author(s):  
Bo Yang ◽  
Eric Klineberg ◽  
Grace D. O'Connell

Abstract Painful herniated discs are treated surgically by removing extruded nucleus pulposus (NP) material (nucleotomy). NP removal through enzymatic digestion is also commonly performed to initiate degenerative changes to study potential biological repair strategies. Experimental and computational studies have shown a decrease in disc stiffness with nucleotomy under single loading modalities, such as compression-only or bending-only loading. However, studies that apply more physiologically relevant loading conditions, such as compression in combination with bending or torsion, have shown contradicting results. We used a previously validated bone–disc–bone finite element model (Control) to create a Nucleotomy model to evaluate the effect of dual loading conditions (compression with torsion or bending) on intradiscal deformations. While disc joint stiffness decreased with nucleotomy under single loading conditions, as commonly reported in the literature, dual loading resulted in an increase in bending stiffness. More specifically, dual loading resulted in a 40% increase in bending stiffness under flexion and extension and a 25% increase in stiffness under lateral bending. The increase in bending stiffness was due to an increase and shift in compressive stress, where peak stresses migrated from the NP–annulus interface to the outer annulus. In contrast, the decrease in torsional stiffness was due to greater fiber reorientation during compression. In general, large radial strains were observed with nucleotomy, suggesting an increased risk for delamination or degenerative remodeling. In conclusion, the effect of nucleotomy on disc mechanics depends on the type and complexity of applied loads.

2019 ◽  
pp. 152808371988181
Author(s):  
Yang Shen ◽  
David Branscomb ◽  
Sabit Adanur

In open lattice composite structures, the lattice components are chemically bonded, which affects the overall properties of the structure. This study examines the effects of chemically bonded joints on the torsional stiffness of tubular lattice composite structures. Tubular open lattice structures, known as the open-architecture composite structures, are manufactured by braiding the impregnated carbon fiber tows. Samples were prepared with no chemically bonded and with epoxy joints using braid angles of 35°, 45°, and 67.5°. A finite element model of the open-architecture composite structures is developed to examine the mechanical behavior under torsion. It is shown that there is a significant difference between the samples with no-bonding joints and samples with epoxy joints in terms of torsional stiffness. Torsional stiffness of the structure is retained at 97%, 96%, and 93% of the theoretical limit for 35°, 45°, and 67.5° braid angles, respectively, when joint stiffness is ten times the component stiffness. Torsional stiffness is only 32%, 22%, and 13% of the theoretical limit for 35°, 45°, and 67.5° braid angles, respectively, when joint stiffness is one-10th of the component stiffness. The epoxy bonding at the intersection achieves 72% of the theoretical torsional stiffness of the “perfect joint” for 45° braid angle when joint stiffness is equal to the component stiffness. The finite element model is validated by experimental results. It can be concluded from the finite element analysis and experimental testing that the stiffness of the bonding joints has significant impact on the overall torsional stiffness of the biaxial composite lattice.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2021 ◽  
pp. 219256822110060
Author(s):  
Jun-Xin Chen ◽  
Yun-He Li ◽  
Jian Wen ◽  
Zhen Li ◽  
Bin-Sheng Yu ◽  
...  

Study Design: A biomechanical study. Objectives: The purpose of this study was to investigate the effects of cruciform and square incisions of annulus fibrosus (AF) on the mechanical stability of bovine intervertebral disc (IVD) in multiple degrees of freedom. Methods: Eight bovine caudal IVD motion segments (bone-disc-bone) were obtained from the local abattoir. Cruciform and square incisions were made at the right side of the specimen’s annulus using a surgical scalpel. Biomechanical testing of three-dimensional 6 degrees of freedom was then performed on the bovine caudal motion segments using the mechanical testing and simulation (MTS) machine. Force, displacement, torque and angle were recorded synchronously by the MTS system. P value <.05 was considered statistically significant. Results: Cruciform and square incisions of the AF reduced both axial compressive and torsional stiffness of the IVD and were significantly lower than those of the intact specimens ( P < .01). Left-side axial torsional stiffness of the cruciform incision was significantly higher than a square incision ( P < .01). Neither incision methods impacted flexional-extensional stiffness or lateral-bending stiffness. Conclusions: The cruciform and square incisions of the AF obviously reduced axial compression and axial rotation, but they did not change the flexion-extension and lateral-bending stiffness of the bovine caudal IVD. This mechanical study will be meaningful for the development of new approaches to AF repair and the rehabilitation of the patients after receiving discectomy.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2005 ◽  
Vol 127 (6) ◽  
pp. 929-933 ◽  
Author(s):  
Eric H. Ledet ◽  
Michael P. Tymeson ◽  
Simon Salerno ◽  
Allen L. Carl ◽  
Andrew Cragg

Background: Interbody arthrodesis is employed in the lumbar spine to eliminate painful motion and achieve stability through bony fusion. Bone grafts, metal cages, composite spacers, and growth factors are available and can be placed through traditional open techniques or minimally invasively. Whether placed anteriorly, posteriorly, or laterally, insertion of these implants necessitates compromise of the anulus—an inherently destabilizing procedure. A new axial percutaneous approach to the lumbosacral spine has been described. Using this technique, vertical access to the lumbosacral spine is achieved percutaneously via the presacral space. An implant that can be placed across a motion segment without compromise to the anulus avoids surgical destabilization and may be advantageous for interbody arthrodesis. The purpose of this study was to evaluate the in vitro biomechanical performance of the axial fixation rod, an anulus sparing, centrally placed interbody fusion implant for motion segment stabilization. Method of Approach: Twenty-four bovine lumbar motion segments were mechanically tested using an unconstrained flexibility protocol in sagittal and lateral bending, and torsion. Motion segments were also tested in axial compression. Each specimen was tested in an intact state, then drilled (simulating a transaxial approach to the lumbosacral spine), then with one of two axial fixation rods placed in the spine for stabilization. The range of motion, bending stiffness, and axial compressive stiffness were determined for each test condition. Results were compared to those previously reported for femoral ring allografts, bone dowels, BAK and BAK Proximity cages, Ray TFC, Brantigan ALIF and TLIF implants, the InFix Device, Danek TIBFD, single and double Harms cages, and Kaneda, Isola, and University plating systems. Results: While axial drilling of specimens had little effect on stiffness and range of motion, specimens implanted with the axial fixation rod exhibited significant increases in stiffness and decreases in range of motion relative to intact state. When compared to existing anterior, posterior, and interbody instrumentation, lateral and sagittal bending stiffness of the axial fixation rod exceeded that of all other interbody devices, while stiffness in extension and axial compression were comparable to plate and rod constructs. Torsional stiffness was comparable to other interbody constructs and slightly lower than plate and rod constructs. Conclusions: For stabilization of the L5-S1 motion segment, axial placement of implants offers potential benefits relative to traditional exposures. The preliminary biomechanical data from this study indicate that the axial fixation rod compares favorably to other devices and may be suitable to reduce pathologic motion at L5-S1, thus promoting bony fusion.


2012 ◽  
Vol 248 ◽  
pp. 69-73 ◽  
Author(s):  
Shu Ming Chen ◽  
Xue Wei Song ◽  
Chuan Liang Shen ◽  
Deng Feng Wang ◽  
Wei Li

In order to know the static stiffness characteristics of the vehicle body in white, the bending stiffness and torsional stiffness of an automotive body in white were tested on a test bench of the static stiffness of an automotive BIW. The bending stiffness and bending deformation of the bottom of the BIW were determined. Also, the torsional stiffness and torsional deformation of the bottom of the BIW were obtained. The fitting curves and equations between loading torque and torsional angle were acquired at clockwise and counterclockwise loading, respectively.


2021 ◽  
Author(s):  
Rashique Iftekhar Rousseau ◽  
Abdel-Hakim Bouzid ◽  
Zijian Zhao

Abstract The axial stiffnesses of the bolt and clamped members of bolted joints are of great importance when considering their integrity and capacity to withstand external loads and resist relaxation due to creep. There are many techniques to calculate the stiffnesses of the joint elements using finite element (FE) modeling, but most of them are based on the displacement of nodes that are selected arbitrarily; therefore, leading to inaccurate values of joint stiffness. This work suggests a new method to estimate the stiffnesses of the bolt and clamped members using FE analysis and compares the results with the FE methods developed earlier and also with the existing analytical models. A new methodology including an axisymmetric finite element model of the bolted joint is proposed in which the bolts of different sizes ranging from M6 to M36 are considered for the analysis to generalize the proposed approach. The equivalent bolt length that includes the contribution of the thickness of the bolt head and the bolt nominal diameter to the bolt stiffness is carefully investigated. An equivalent bolt length that accounts for the flexibility of the bolt head is proposed in the calculation of the bolt stiffness and a new technique to accurately determine the stiffness of clamped members are detailed.


2013 ◽  
Vol 368-370 ◽  
pp. 1426-1430
Author(s):  
Li Xiong Gu ◽  
Rong Hui Wang

In this paper, by establishing the finite element model to study the dynamic characteristics of rigid frame single-rib arch bridge. By respectively changing structural parameters of the span ratios, and the compressive stiffness of arch, and the bending stiffness of arch, and the bending stiffness of bridge girder, and the layout of boom to find out the regularity of the structure on lateral stiffness, and vertical stiffness, and torsional stiffness as well as dynamic properties, it come out the results of that lateral stiffness of the structure is weaker, and increasing the span ratios and the compressive strength of arch are conducive to the improvement of the overall stiffness, and improving the bending strength of arch and layout of boom are less effect on the overall stiffness and mode shape.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879306 ◽  
Author(s):  
Zhifeng Liu ◽  
Jingjing Xu ◽  
Qiang Cheng ◽  
Yongsheng Zhao ◽  
Yanhu Pei

Joint flexibility has a major impact on the motion accuracy of a robotic end effector, particularly at high speeds. This work proposes a technique of precisely modeling the torsional stiffness of the rotational joints for the industrial robots. This technique considers the contacts that exist in the joint system, which can have a significant effect on the overall joint stiffness. The torsional stiffness of the connections that commonly exist in the rotational joints, such as the belt connection, the connections using key, bolts, and pins, were modeled by combining the force analysis and the fractal theory. Through modeling the equivalent stiffness for the springs in serial and in parallel, the torsional stiffness of all joints for the ER3A-C60 robot were calculated and analyzed. The results show that the estimated stiffness based on the proposed technique is closer to the actual values than that based on the previous model without considering the contacts. The analysis is useful for controlling the dynamic characteristic of the industrial robots with the rotational joints while planning the trajectory for the end effector.


Author(s):  
Ievgen Levadnyi ◽  
Jan Awrejcewicz ◽  
Yan Zhang ◽  
Yaodong Gu

Bone fracture, formation and adaptation are related to mechanical strains in bone. Assessing bone stiffness and strain distribution under different loading conditions may help predict diseases and improve surgical results by determining the best conditions for long-term functioning of bone-implant systems. In this study, an experimentally wide range of loading conditions (56) was used to cover the directional range spanned by the hip joint force. Loads for different stance configurations were applied to composite femurs and assessed in a material testing machine. The experimental analysis provides a better understanding of the influence of the bone inclination angle in the frontal and sagittal planes on strain distribution and stiffness. The results show that the surface strain magnitude and stiffness vary significantly under different loading conditions. For the axial compression, maximal bending is observed at the mid-shaft, and bone stiffness is also maximal. The increased inclination leads to decreased stiffness and increased magnitude of maximum strain at the distal end of the femur. For comparative analysis of results, a three-dimensional, finite element model of the femur was used. To validate the finite element model, strain gauges and digital image correlation system were employed. During validation of the model, regression analysis indicated robust agreement between the measured and predicted strains, with high correlation coefficient and low root-mean-square error of the estimate. The results of stiffnesses obtained from multi-loading conditions experiments were qualitatively compared with results obtained from a finite element analysis of the validated model of femur with the same multi-loading conditions. When the obtained numerical results are qualitatively compared with experimental ones, similarities can be noted. The developed finite element model of femur may be used as a promising tool to estimate proximal femur strength and identify the best conditions for long-term functioning of the bone-implant system in future study.


Sign in / Sign up

Export Citation Format

Share Document