Flow Past Spherical Pipeline Inspection Gadgets in an Automated Launching System

Author(s):  
Aarthi Sekaran ◽  
Will Stratton

Abstract Pipeline inspection gadgets (PIGs) are routinely used in pipeline maintenance, cleaning, and inspection. A fundamental understanding of the fluid flow around the PIG and consequently its impact on the operation is however still lacking. The surrounding flow and the dynamics of the PIG vary significantly based on the PIG shape and orientation to flow. Previous studies of PIG motion typically employed empirical experimental or reduced numerical data to extrapolate PIG velocities and pressure drops along the pipeline - while this could resolve issues specific to the case being studied, it does not go very far in developing an overall understanding of the dynamics of the system. Our study aims at analyzing a range of configurations for spherical PIGs in a natural gas pipeline to analyze flow patterns around them and determine their impact on PIG motion. Given the nature of the automated launcher analyzed, we carry out U-RANS simulations of a section of the launcher assembly, including the PIG in its initial position, at different field operating conditions. We simulate this setup for both single and multiple PIGs to determine alterations in the flow for a given launch sequence and outline the limitations of the setup. We then use the results from these simulations to determine the optimum configuration for a successful launch.

Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1100-1107
Author(s):  
Ghulam Rasool ◽  
Waqar A. Khan ◽  
Sardar Muhammad Bilal ◽  
Ilyas Khan

Abstract This research is mainly concerned with the characteristics of magnetohydrodynamics and Darcy–Forchheimer medium in nanofluid flow between two horizontal plates. A uniformly induced magnetic impact is involved at the direction normal to the lower plate. Darcy–Forchheimer medium is considered between the plates that allow the flow along horizontal axis with additional effects of porosity and friction. The features of Brownian diffusive motion and thermophoresis are disclosed. Governing problems are transformed into nonlinear ordinary problems using appropriate transformations. Numerical Runge–Kutta procedure is applied using MATLAB to solve the problems and acquire the data for velocity field, thermal distribution, and concentration distribution. Results have been plotted graphically. The outcomes indicate that higher viscosity results in decline in fluid flow. Thermal profile receives a decline for larger viscosity parameter; however, Brownian diffusion and thermophoresis appeared as enhancing factors for the said profile. Numerical data indicate that heat flux reduces for viscosity parameter. However, enhancement is observed in skin-friction for elevated values of porosity factor. Data of this paper are practically helpful in industrial and engineering applications of nanofluids.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


2005 ◽  
Vol 128 (3) ◽  
pp. 585-598 ◽  
Author(s):  
Wei Shang ◽  
Robert W. Besant

A prime concern with the design of ultra-compact heat exchangers is the impact on performance of flow channel variations due to flow channel hydraulic diameter variations caused by manufacturing tolerances. This paper uses analytical methods to show that as the standard deviation in flow channel sizes, caused by manufacturing tolerances in a rotary regenerative exchanger, is increased compared to the average flow channel diameter the effective number of transfer units decreases. Depending on the operating conditions, the entropy generation number either increases or decreases with increasing flow channel size variations. These findings extend previous findings that showed that flow channel variations cause lower pressure drops and effectiveness.


2021 ◽  
Author(s):  
Sujet Phodapol ◽  
Tachadol Suthisomboon ◽  
Pong Kosanunt ◽  
Ravipas Vongasemjit ◽  
Petch Janbanjong ◽  
...  

Abstract Passive and active hybrid pipeline inspection gauges (PIGs) have been used for in-pipe inspection. While a passive PIG cannot control its speed, the hybrid version can achieve this by using an integrated valve specifically designed and embedded in the PIG. This study proposes a generic new method for speed adaptation in PIGs (called MC-PIG) by introducing a generic, modular, controllable, external valve unit add-on for attaching to existing conventional (passive) PIGs with minimal change. The MC-PIG method is based on the principle of morphological computation with closed-loop control. It is achieved by regulating/computing the PIG's morphology (i.e., a modular rotary valve unit add-on) to control bypass flow. Adjustment of the valve angle can affect the flow rate passing through the PIG, resulting in speed regulation ability. We use numerical simulation with computational fluid dynamics (CFD) to investigate and analyze the speed of a simulated PIG with the valve unit adjusted by proportional-integral (PI) control under various in-pipe pressure conditions. Our simulation experiments are performed under different operating conditions in three pipe sizes (16″, 18″, and 22″ in diameter) to manifest the speed adaptation of the PIG with the modular valve unit add-on and PI control. Our results show that the PIG can effectively perform real-time adaptation (i.e., adjusting its valve angle) to maintain the desired speed. The valve design can be adjusted from 5 degrees (closed valve, resulting in high moving speed) to a maximum of 45 degrees (fully open valve, resulting in low moving speed). The speed of the PIG can be regulated from 0.59 m/s to 3.88 m/s in a 16″ pipe at 4.38 m/s (in-pipe fluid velocity), 2500 kPa (operating pressure), and 62 °C (operating temperature). Finally, the MC-PIG method is validated using a 3D-printed prototype in a 6″ pipe. Through the investigation, we observed that two factors influence speed adaptation; the pressure drop coefficient and friction of the PIG and pipeline. In conclusion, the results from the simulation and prototype show close characteristics with an acceptable error.


1984 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
P. Souza Mendes ◽  
E. M. Sparrow

A comprehensive experimental study was performed to determine entrance region and fully developed heat transfer coefficients, pressure distributions and friction factors, and patterns of fluid flow in periodically converging and diverging tubes. The investigated tubes consisted of a succession of alternately converging and diverging conical sections (i.e., modules) placed end to end. Systematic variations were made in the Reynolds number, the taper angle of the converging and diverging modules, and the module aspect ratio. Flow visualizations were performed using the oil-lampblack technique. A performance analysis comparing periodic tubes and conventional straight tubes was made using the experimentally determined heat transfer coefficients and friction factors as input. For equal mass flow rate and equal transfer surface area, there are large enhancements of the heat transfer coefficient for periodic tubes, with accompanying large pressure drops. For equal pumping power and equal transfer surface area, enhancements in the 30–60 percent range were encountered. These findings indicate that periodic converging-diverging tubes possess favorable enhancement characteristics.


Author(s):  
Müjdat Firat

The present study has been performed on heat transfer, fluid flow and formation of emissions in a diesel engine by different engine parameters. The analysis aims at an investigation of flow field, heat transfer, combustion pressure and formation of emission by means of numerical simulation which is using as parameter; hole number of injector and crank angle. Numerical simulations are performed using the AVL-FIRE commercial software depending on the crank angle. This software is successfully used in internal combustion engine applications, and its validity has been accepted. In this paper, k-zeta-f is preferred as turbulence model and SIMPLE/PISO used as algorithms. Thus, results are presented with pressure traces, temperature curves and NOx and soot levels for engine operating conditions. In addition, the relationship between the spray behaviors and combustion characteristics including NOx emissions, soot emissions, combustion pressure and temperature were illustrated through this analysis.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7972
Author(s):  
Anna Kraszewska ◽  
Janusz Donizak

Transition to turbulence and changes in the fluid flow structure are subjects of continuous analysis and research, especially for unique fields of research such as the thermo-magnetic convection of weakly magnetic fluids. Therefore, an experimental and numerical research of the influence of an external magnetic field on a natural convection’s fluid flow was conducted in the presented research. The experimental part was performed for an enclosure with a 0.5 aspect ratio, which was filled with a paramagnetic fluid and placed in a superconducting magnet in a position granting the enhancement of the flow. The process was recorded as temperature signals from the thermocouples placed in the analyzed fluid. The numerical research enabled an investigation based not only on temperature, but velocities as well. Experimental and numerical data were analyzed with the application of extended fast Fourier transform and wavelet analysis. The obtained results allowed the determination of changes in the nature of the flow and visualization of the influence of an imposed strong magnetic field on a magnetic fluid. It is proved that an applied magnetic field actuates the flow in Rayleigh-Benard convection and causes the change from laminar to turbulent flow for fairly low magnetic field inductions (2T and 3T for ΔT = 5 and 11 °C respectively). Fast Fourier transform allowed the definition of characteristic frequencies for oscillatory states in the flow, as well as an observation that the high values of magnetic field elongate the inertial range of the flow on the power spectrum density. Temperature maps obtained during numerical simulations granted visualizations of thermal plume formation and behavior with increasing magnetic field.


Author(s):  
Michael J. Denton ◽  
Samir B. Tambe ◽  
San-Mou Jeng

The altitude relight of a gas turbine combustor is an FAA and EASA regulation which dictates the successful re-ignition of an engine and its proper spool-up after an in-flight shutdown. Combustor pressure loss, ambient pressure, ambient temperature, and equivalence ratio were all studied on a full-scale, 3-cup, single-annular aviation combustor sector to create an ignition map. The flame development process was studied through the implementation of high-speed video. Testing was conducted by placing the sector horizontally upstream of an air jet ejector in a high altitude relight testing facility. Air was maintained at room temperature for varying pressure, and then the cryogenic heat exchanger was fed with liquid nitrogen to chill the air down to a limit of −50 deg F, corresponding with an altitude of 30,000 feet. Fuel was injected at constant equivalence ratios across multiple operating conditions, giving insight into the ignition map of the combustor sector. Results of testing indicated difficulty in achieving ignition at high altitudes for pressure drops greater than 2%, while low pressure drops show adequate performance. Introducing low temperatures to simulate the ambient conditions yielded a worse outcome, with all conditions having poor results except for 1%. High-speed video of the flame development process during the relight conditions across all altitudes yielded a substantial effect of the pressure drop on ignitability of the combustor. An increase in pressure drop was associated with a decrease in the likelihood of ignition success, especially at increasing altitudes. The introduction of the reduced temperature effect exacerbated this effect, further hurting ignition. High velocity regions in the combustor were detrimental to the ignition, and high area, low velocity regions aided greatly. The flame tended to settle into the corner recirculation zone and recirculate back into the center-toroidal recirculation zone (CTRZ), spreading downstream and likewise into adjacent swirl cups. These tests demonstrate the need for new combustor designs to consider adding large recirculation zones for combustor flame stability that will aid in relight requirements.


Sign in / Sign up

Export Citation Format

Share Document