Heat Transfer From a Concentrated Tip Source in Falkner-Skan Flow

2021 ◽  
Author(s):  
C.Y. Wang

Abstract The Falkner-Skan flow over a wedge is classic in boundary layer theory. We consider the heat or mass transfer from a source at the vertex of the wedge. The interactions of thermal boundary layer and momentum boundary layer lead to nonlinear similarity equations which are integrated numerically. There exists a mixing index which depends on the Prandtl number and the wedge opening angle. Attention is paid to special cases such as forced convection in Blasius flow past a semi-infinite plate and the Hiemenz stagnation flow normal to a plate.

2019 ◽  
Vol 24 (1) ◽  
pp. 53-66
Author(s):  
O.J. Fenuga ◽  
S.J. Aroloye ◽  
A.O. Popoola

Abstract This paper investigates a chemically reactive Magnetohydrodynamics fluid flow with heat and mass transfer over a permeable surface taking into consideration the buoyancy force, injection/suction, heat source/sink and thermal radiation. The governing momentum, energy and concentration balance equations are transformed into a set of ordinary differential equations by method of similarity transformation and solved numerically by Runge- Kutta method based on Shooting technique. The influence of various pertinent parameters on the velocity, temperature, concentration fields are discussed graphically. Comparison of this work with previously published works on special cases of the problem was carried out and the results are in excellent agreement. Results also show that the thermo physical parameters in the momentum boundary layer equations increase the skin friction coefficient but decrease the momentum boundary layer. Fluid suction/injection and Prandtl number increase the rate of heat transfer. The order of chemical reaction is quite significant and there is a faster rate of mass transfer when the reaction rate and Schmidt number are increased.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Jason E. Dees ◽  
David G. Bogard ◽  
Gustavo A. Ledezma ◽  
Gregory M. Laskowski ◽  
Anil K. Tolpadi

Recent advances in computing power have made conjugate heat transfer simulations of turbine components increasingly popular; however, limited experimental data exist with which to evaluate these simulations. The primary parameter used to evaluate simulations is often the external surface temperature distribution, or overall effectiveness. In this paper, the overlying momentum and thermal boundary layers at various streamwise positions around a conducting, internally cooled simulated turbine vane were measured under low (Tu = 0.5%) and high (Tu = 20%) freestream turbulence conditions. Furthermore, experimental results were compared to computational predictions. In regions where a favorable pressure gradient existed, the thermal boundary layer was found to be significantly thicker than the accompanying momentum boundary layer. Elevated freestream turbulence had the effect of thickening the thermal boundary layer much more effectively than the momentum boundary layer over the entire vane. These data are valuable in understanding the conjugate heat transfer effects on the vane as well as serving as a tool for computational code evaluation.


2011 ◽  
Vol 8 (65) ◽  
pp. 1785-1795 ◽  
Author(s):  
Isabel M. Jimenez ◽  
Michael Kühl ◽  
Anthony W. D. Larkum ◽  
Peter J. Ralph

The thermal microenvironment of corals and the thermal effects of changing flow and radiation are critical to understanding heat-induced coral bleaching, a stress response resulting from the destruction of the symbiosis between corals and their photosynthetic microalgae. Temperature microsensor measurements at the surface of illuminated stony corals with uneven surface topography ( Leptastrea purpurea and Platygyra sinensis ) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies. The effect of water flow on the thermal microenvironment was investigated in hemispherical and branching corals ( Porites lobata and Stylophora pistillata , respectively) in a flow chamber experiment. For both coral types, the thickness of the TBL decreased exponentially from 2.5 mm at quasi-stagnant flow (0.3 cm s −1 ), to 1 mm at 5 cm s −1 , with an exponent approximately 0.5 consistent with predictions from the heat transfer theory for simple geometrical objects and typical of laminar boundary layer processes. Measurements of mass transfer across the diffusive boundary layer using O 2 microelectrodes revealed a greater exponent for mass transfer when compared with heat transfer, indicating that heat and mass transfer at the surface of corals are not exactly analogous processes.


Author(s):  
Chris J. Kobus

In advanced heat transfer courses, a technique exists for reducing a partial differential equation, where the dependent variable is a function of two independent variables, to an ordinary differential equation where that same dependent variable becomes a function of only one. The key to this technique is finding out what the functional form of the similarity variable is to make such a transformation. The difficulty is that the form of the similarity variable is not intuitive, and many heat transfer textbooks do not reveal how this variable is found in classical problems such as viscous and thermal boundary layer theory. It turns out that one way to find this variable is by utilizing the integral technique. By employing the integral technique to boundary layer theory, it will be shown that when the approximate functional relationship for the dependent variable (temperature, velocity, etc) can be represented by an nth order polynomial, the similarity variable can be found very simply. This is seen to be a good tool especially in heat transfer education, but may have applications in research as well. The approach described here is a variation of a well-known technique used for isothermal momentum boundary layer consideration.


Author(s):  
Jason E. Dees ◽  
David G. Bogard ◽  
Gustavo A. Ledezma ◽  
Gregory M. Laskowski ◽  
Anil K. Tolpadi

Recent advances in computing power have made conjugate heat transfer simulations of turbine components increasingly popular; however, limited experimental data exists with which to evaluate these simulations. The primary parameter used to evaluate simulations is often the external surface temperature distribution, or overall effectiveness. In this paper, the overlying momentum and thermal boundary layers at various streamwise positions around a conducting, internally cooled simulated turbine vane were measured under low (Tu = 0.5%) and high (Tu = 20%) freestream turbulence conditions. Furthermore, experimental results were compared to computational predictions. In regions were a favorable pressure gradient existed, the thermal boundary layer was found to be significantly thicker than the accompanying momentum boundary layer. Elevated freestream turbulence had the effect of thickening the thermal boundary layer much more effectively than the momentum boundary layer over the entire vane. This data is valuable in understanding the conjugate heat transfer effects on the vane as well as serving as a tool for computational code evaluation.


2020 ◽  
Vol 45 (4) ◽  
pp. 373-383
Author(s):  
Nepal Chandra Roy ◽  
Sadia Siddiqa

AbstractA mathematical model for mixed convection flow of a nanofluid along a vertical wavy surface has been studied. Numerical results reveal the effects of the volume fraction of nanoparticles, the axial distribution, the Richardson number, and the amplitude/wavelength ratio on the heat transfer of Al2O3-water nanofluid. By increasing the volume fraction of nanoparticles, the local Nusselt number and the thermal boundary layer increases significantly. In case of \mathrm{Ri}=1.0, the inclusion of 2 % and 5 % nanoparticles in the pure fluid augments the local Nusselt number, measured at the axial position 6.0, by 6.6 % and 16.3 % for a flat plate and by 5.9 % and 14.5 %, and 5.4 % and 13.3 % for the wavy surfaces with an amplitude/wavelength ratio of 0.1 and 0.2, respectively. However, when the Richardson number is increased, the local Nusselt number is found to increase but the thermal boundary layer decreases. For small values of the amplitude/wavelength ratio, the two harmonics pattern of the energy field cannot be detected by the local Nusselt number curve, however the isotherms clearly demonstrate this characteristic. The pressure leads to the first harmonic, and the buoyancy, diffusion, and inertia forces produce the second harmonic.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 702
Author(s):  
Ramanahalli Jayadevamurthy Punith Gowda ◽  
Rangaswamy Naveen Kumar ◽  
Anigere Marikempaiah Jyothi ◽  
Ballajja Chandrappa Prasannakumara ◽  
Ioannis E. Sarris

The flow and heat transfer of non-Newtonian nanofluids has an extensive range of applications in oceanography, the cooling of metallic plates, melt-spinning, the movement of biological fluids, heat exchangers technology, coating and suspensions. In view of these applications, we studied the steady Marangoni driven boundary layer flow, heat and mass transfer characteristics of a nanofluid. A non-Newtonian second-grade liquid model is used to deliberate the effect of activation energy on the chemically reactive non-Newtonian nanofluid. By applying suitable similarity transformations, the system of governing equations is transformed into a set of ordinary differential equations. These reduced equations are tackled numerically using the Runge–Kutta–Fehlberg fourth-fifth order (RKF-45) method. The velocity, concentration, thermal fields and rate of heat transfer are explored for the embedded non-dimensional parameters graphically. Our results revealed that the escalating values of the Marangoni number improve the velocity gradient and reduce the heat transfer. As the values of the porosity parameter increase, the velocity gradient is reduced and the heat transfer is improved. Finally, the Nusselt number is found to decline as the porosity parameter increases.


1972 ◽  
Vol 94 (1) ◽  
pp. 23-28 ◽  
Author(s):  
E. Brundrett ◽  
W. B. Nicoll ◽  
A. B. Strong

The van Driest damped mixing length has been extended to account for the effects of mass transfer through a porous plate into a turbulent, two-dimensional incompressible boundary layer. The present mixing length is continuous from the wall through to the inner-law region of the flow, and although empirical, has been shown to predict wall shear stress and heat transfer data for a wide range of blowing rates.


Sign in / Sign up

Export Citation Format

Share Document