The interface competitive debonding of a bilayer elastic film on a rigid substrate

2021 ◽  
pp. 1-26
Author(s):  
Hanbin Yin ◽  
Yin Yao ◽  
Yazheng Yang ◽  
Zhilong Peng ◽  
Shaohua Chen

Abstract Different from the system of a single-layer elastic film on a rigid substrate, it is difficult to determine which interface will debond in a bilayer or multilayer film-substrate system. A peeling model of a bilayer elastic film on a rigid substrate is established in the present paper, in order to predict which interface debonding occurs first. The interfacial competitive debonding mechanism is theoretically analyzed with the help of the beam bending theory. A criterion of which interface debonding occurs first is proposed. It is found that the interfacial debonding path is mainly controlled by five dimensionless parameters, i.e., the strength ratio and the critical separation distance ratio of the upper and lower interfaces, the Young's modulus ratio and the thickness ratio of the upper and lower films, and the possible initial cantilever length for ease of loading. The corresponding competitive debonding map is well obtained. From the map, which interface debonds first can be easily predicted. It is interesting to find that the interfacial debonding path can be well tuned by any one of the five parameters. The results of the finite element calculation further confirm the theoretical predictions. The present work can not only provide a theoretical method to determine the interfacial debonding path but also be helpful for the optimal design of multilayer film-substrate systems in practical applications.

2004 ◽  
Vol 815 ◽  
Author(s):  
S.M. Bishop ◽  
E.A. Preble ◽  
C. Hallin ◽  
A. Henry ◽  
W. Sarney ◽  
...  

AbstractHomoepitaxial films of 4H-SiC(1120) and 8° off-axis 4H-SiC(0001) have been grown and characterized. The number of domains and the range of full-width half-maxima values of the x-ray rocking curves of the [1120]-oriented wafers were smaller than the analogous values acquired from the (0001) materials. Hydrogen etching of the former surface for 5 and 30 minutes reduced the RMS roughness from 0.52 nm to 0.48 nm and to 0.28 nm, respectively; the RMS roughness for a 30 μm (1120) film was 0.52 nm. Micropipes in the substrates did not thread beyond the film-substrate interface. The separation distance between stacking faults was determined to be 10 μm by transmission electron microscopy. Hall mobilities and carrier concentrations of 12,200 cm2/Vs and 3.1×1014 cm−3 and 800 cm2/Vs and 7.4×1014 cm−3 were measured at 100°K and 300°K, respectively. Photoluminescence indicated high purity. 4H-SiC(1120) PiN devices exhibited average blocking voltages to 1344 V and a minimum average forward voltage drop of 3.94 V.


1993 ◽  
Vol 115 (3) ◽  
pp. 297-301
Author(s):  
Y. W. Kwon ◽  
M. Serttunc

Analyses were performed for static and dynamic buckling of a continuous fiber embedded in a matrix in order to determine effects of interfacial debonding on the critical buckling load and the domain of instability. A beam on elastic foundation model was used for the study. The study showed that a local interfacial debonding between a fiber and a surrounding matrix resulted in an increase of the wavelength of the buckling mode. An increase of the wavelength yielded a decrease of the static buckling load and lowered the dynamic instability domain. In general, the effect of a partial or complete interfacial debonding on the domain of dynamic instability was more significant than its effect on the static buckling load. For dynamic buckling of a fiber, a local debonding of size 10 to 20 percent of the fiber length had the most important influence on the domains of dynamic instability regardless of the location of debonding and the boundary conditions of the fiber. For static buckling, the location of a local debonding was critical to a free, simply supported fiber, but not to a fiber with both ends simply supported.


2016 ◽  
Vol 83 (12) ◽  
Author(s):  
Bo Lu ◽  
Yanfei Zhao ◽  
Yicheng Song ◽  
Junqian Zhang

By directly solving the prescribed differential equations, an analytical method based on the cohesive model has been developed to investigate the interfacial debonding process induced by lithiation in an axisymmetric thin film electrode where an elastic active layer is bonded on a rigid substrate. The assumption of rigid substrate has been proved acceptable for high-modulus substrates such as copper and aluminum which are common materials for current collectors in lithium-ion batteries. For the case where the weak interface is assumed and the radial concentration gradient is neglected, an extremely simplified solution has been obtained. The simplified solution which has acceptable accuracy provides a good guidance for understanding and predicting the interfacial debonding.


2013 ◽  
Vol 81 (5) ◽  
Author(s):  
Qiming Wang ◽  
Xuanhe Zhao

Subject to a compressive membrane stress, an elastic film bonded on a substrate can become unstable, forming wrinkles, creases or delaminated buckles. Further increasing the compressive stress can induce advanced modes of instabilities including period-doubles, folds, localized ridges, delamination, and coexistent instabilities. While various instabilities in film-substrate systems under compression have been analyzed separately, a systematic and quantitative understanding of these instabilities is still elusive. Here we present a joint experimental and theoretical study to systematically explore the instabilities in elastic film-substrate systems under uniaxial compression. We use the Maxwell stability criterion to analyze the occurrence and evolution of instabilities analogous to phase transitions in thermodynamic systems. We show that the moduli of the film and the substrate, the film-substrate adhesion strength, the film thickness, and the prestretch in the substrate determine various modes of instabilities. Defects in the film-substrate system can facilitate it to overcome energy barriers during occurrence and evolution of instabilities. We provide a set of phase diagrams to predict both initial and advanced modes of instabilities in compressed film-substrate systems. The phase diagrams can be used to guide the design of film-substrate systems to achieve desired modes of instabilities.


1999 ◽  
Vol 172 ◽  
pp. 441-442
Author(s):  
J.R. Donnison

Progress has been made in understanding the stability of hierarchical three-body systems where the third body moves on an approximately Keplerian orbit about the centre of mass of the binary, at a distance large compared to the binary separation. Harrington (1968,1969) showed analytically that provided the third body was sufficiently distant from the binary no secular terms appeared in the semi-major axis and the system was stable. Harrington (1972,1975,1977) established numerically a critical minimum separation distance (or period) for a stable system in terms of the masses, unaffected by the relative inclinations of the orbits, except for angles close to 90°. Most subsequent investigations have therefore used planar configurations. Graziani & Black (1981), Black (1982) and Pendleton & Black (1983) again using long-term integration of the orbits obtained a criterion for high and low mass binaries. Donnison & Mikulskis (1992,1994,1995) carried out numerical integrations on prograde, retrogade, planetary and stellar triple systems and found for prograde systems very good quantitative agreement with the c2H method. Eggleton & Kieselva (1995) suggested a critical distance ratio approximation determined by the masses in the system. Systems with eccentric orbits are covered using the period ratio determined by Kepler’s third law.


2020 ◽  
Vol 191-192 ◽  
pp. 473-485
Author(s):  
H.B. Yin ◽  
L.H. Liang ◽  
Y.G. Wei ◽  
Z.L. Peng ◽  
S.H. Chen

2011 ◽  
Vol 700 ◽  
pp. 129-132 ◽  
Author(s):  
Cosmin Laslau ◽  
David E. Williams ◽  
Bryon E. Wright ◽  
Jadranka Travas Sejdic

We discuss experimental issues associated with a novel operating mode of scanning ion conductance microscopy (SICM). This mode characterizes the ion fluxes that emanate from conducting polymers (CPs) as they actuate, important for understanding CP applications ranging from artificial muscles to micropumps. The CP studied is a thin film of poly (3,4-ethylenedioxythiophene) (PEDOT) actuated out of plane. We outline the design principles underpinning our CP ion flux measurements and discuss experimental complications that arose - most notably a baseline current that may be attributable to a spatially varying CP oxidation state. We discuss the dependence of this baseline ion flux current on the separation distance between SICM tip and CP film, substrate type and substrate area.


2008 ◽  
Vol 1139 ◽  
Author(s):  
Jae Hun Kim ◽  
Andrew Gouldstone ◽  
Chad S. Korach

AbstractAccurate mechanical property measurement of films on substrates by instrumented indentation requires a solution describing the effective modulus of the film/substrate system. Here, a first-order elastic perturbation solution for spherical punch indentation on a film/substrate system is presented. Finite element method (FEM) simulations were conducted for comparison with the analytic solution. FEM results indicate that the new solution is valid for a practical range of modulus mismatch, especially for a stiff film on a compliant substrate.


2016 ◽  
Vol 83 (9) ◽  
Author(s):  
R. Zhao ◽  
M. Diab ◽  
K.-S. Kim

When an elastic thin-film/substrate bilayer is cyclically compressed with a large plane-strain stroke, various surface morphologies develop either reversibly or irreversibly with cyclic hysteresis. Here, we examine the cyclic morphology evolution with extensive finite-element analyses and present a generic irreversibility map on the primary bilayer Ruga-phase diagram (PB-RPD). The term “PB” refers to a system of a film on a substrate, both of which are incompressible neo-Hookean, while the term “Ruga-phase” refers to the classification of corrugated surface morphologies. Our generic map reveals two configurational irreversibility types of Ruga-phases during a loading and unloading cycle. One, localization irreversibility, is caused by unstable crease localization and the other, modal irreversibility, by unstable mode transitions of wrinkle-Ruga configurations. While the instability of crease localization depends mainly on smoothness of the creasing surface or interface, the instability of Ruga-mode transition is sensitive to film/substrate stiffness ratio, film/substrate strain mismatch (εps), and material viscosity of the bilayer. For small strain mismatches (εps ≲ 0.5), PB Ruga structures are ordered; otherwise, for large strain mismatches, the Ruga structures can evolve to ridge configurations. For evolution of ordered Ruga phases, the configurational irreversibility leads to shake-down or divergence of cyclic hysteresis. Underlying mechanisms of the cyclic hysteresis are found to be the unstable Ruga-phase transitions of mode-period multiplications in the loading cycle, followed by either mode “locking” or primary-period “switching” in the unloading cycle. In addition, we found that the primary-period switching is promoted by the strain mismatch and material viscosity. These results indicate that various Ruga configurations can be excited, and thus, diverse Ruga-phases can coexist, under cyclic loading. Our irreversibility map will be useful in controlling reversibility as well as uniformity of Ruga configurations in many practical applications.


Sign in / Sign up

Export Citation Format

Share Document