A Comparative Study of Methane Combustion Characteristics with Different Additions in an Optical SI Engine

Author(s):  
Lin Chen ◽  
Xiao Zhang ◽  
Ren Zhang ◽  
Wanhui Zhao

Abstract Natural gas is a promising fuel for IC engines with minimal modification, whereas its low power output and slow flame propagation speed remain a challenge for automobile manufacturers. To find a method of improving the natural gas engines, methane combustion with different additions was comparatively studied. High-speed direct photography and simultaneous pressure were performed to capture detailed combustion evolutions. First, the results of pure methane combustion confirm its good anti-knock property, and no pressure oscillation occurs even there is an end-gas auto-ignition, indicating that high compression ratio and high boosting are effective ways to improve the performance of natural gas engines. Second, adding heavy hydrocarbons can greatly improve engines' power output, but engine knock should be considered if low anti-knock fuel was used. Third, as a carbon-free and gaseous fuel, hydrogen addition can not only increase methane flame propagation speed but reduce cyclic variations. However, a proper fraction is needed under different load conditions. Last, oxygen-enriched combustion is an effective way to promote methane combustion. The heat release becomes faster and more concentrated, specifically, the flame propagation speed can be increased by more than 2 times under 27% oxygen concentration condition. The current study shall give insights into improving natural gas engines' performance.

Author(s):  
Hailin Li ◽  
Timothy Gatts ◽  
Shiyu Liu ◽  
Scott Wayne ◽  
Nigel Clark ◽  
...  

This research investigated the combustion process of an AVL Model LEF/Volvo 5312 single cylinder engine configured to simulate the operation of a heavy-duty spark ignition (SI) natural gas (NG) engine operated on stoichiometric mixture. The factors affecting the combustion process that were examined include intake pressure, spark timing (ST), and the addition of diluents including nitrogen (N2) and carbon dioxide (CO2) to the NG to simulate low British thermal unit (BTU) gases. The mixing of diluents with NG is able to slow down the flame propagation speed, suppress the onset of knock, and allow the engine to operate on higher boost pressure for higher power output. The addition of CO2 was more effective than N2 in suppressing the onset of knock and slowing down the flame propagation speed due to its high heat capacity. Boosting intake pressure significantly increased the heat release rate (HRR) evaluated on J/°CA basis which represents the rate of mass of fuel burning. However, its impact on the normalized HRR evaluated on %/°CA basis, representing the flame propagation rate, was relatively mild. Boosting the intake pressure from 1.0 to 1.8 bar without adding diluents increased the peak HRR to 1.96 times of that observed at 1.0 bar. The increase was due to the burning of more fuel (about 1.8 times), and the 12.9% increase in the normalized HRR. The latter was due to the shortened combustion duration from 23.6 to 18.2 °CA, a 22.9% reduction. The presence of 40% CO2 or N2 in their mixture with NG increased the peak cylinder pressure (PCP) limited brake mean effective pressure (BMEP) from 17.2 to about 20.2 bar. The combustion process of a turbocharged SI NG engine can be approximated by referring to the HRR measured under a naturally aspirated condition. This makes it convenient for researchers to numerically simulate the combustion process and the onset of knock of turbocharged SI NG engines using combustion process data measured under naturally aspirated conditions as a reference.


2014 ◽  
Vol 1044-1045 ◽  
pp. 251-254 ◽  
Author(s):  
Willyanto Anggono ◽  
Fandi Dwiputra Suprianto ◽  
Tubagus P. Wijaya ◽  
Michael S.C. Tanoto

Biogas is a mixture of gases which commonly consists of methane (up to 50%) and other inhibitor gases which are dominated by carbon dioxide (up to 50%). Biogas is produced naturally by the decomposition of organic materials such as vegetation or animal manure in the absence of oxygen and it also contributes less greenhouse gases which may lead to global warming or climate change. The presence of carbon dioxide (CO2) in biogas is presumed to have some effects on biogas flame propagation characteristics. This study focuses on the effect of carbon dioxide (CO2) as the biggest inhibitor composition in biogas on flame propagation speed as the important flame propagation characteristic in spark ignited premix combustion. Propagating flames are employed to measure the flame propagation speed as a function of the mixture composition. This parameter was measured using a transparent tube fuel chamber with dimensions of 60 mm inner diameter and 300 mm height based on DIN 51649 standards and recorded by high speed digital photographic technique. The characteristic of biogas-oxygen flames were studied at stoichiometric, room temperature and atmospheric condition from 0% to 50% CO2 biogas inhibitor composition increased by 10% for each experiment. The results showed that the carbon dioxide decreases flame propagation speed of biogas. These indicated that carbon dioxide reduced reaction rate of biogas premixed combustion.


Author(s):  
Parisa Sayad ◽  
Alessandro Schönborn ◽  
Mao Li ◽  
Jens Klingmann

Flame flashback from the combustion chamber to the premixing section is a major operability issue when using high H2 content fuels in lean premixed combustors. Depending on the flow-field in the combustor, flashback can be triggered by different mechanisms. In this work, three flashback mechanisms of H2/CH4 mixtures were visualized in an atmospheric variable-swirl burner using high speed OH* chemiluminescence imaging. The H2 mole fraction of the tested fuel mixtures varied between 0.1 and 0.9. The flow-field in the combustor was varied by changing the swirl number from 0.0 to 0.66 and the total air mass-flow rate from 75 to 200 SLPM (standard liters per minute). The following three types of flashback mechanism were observed: Flashback caused by combustion induced vortex breakdown (CIVB) occurred at swirl numbers ≥0.53 for all of the tested fuel mixtures. Flashback in the boundary layer (BL) and flame propagation in the premixing tube caused by auto-ignition were observed at low swirl numbers and low total air mass-flow rates. The temporal and spatial propagation of the flame in the optical section of the premixing tube during flashback was studied and flashback speed for different mechanisms was estimated. The flame propagation speed during flashback was significantly different for the different mechanisms.


2009 ◽  
Vol 23 (10) ◽  
pp. 4957-4965 ◽  
Author(s):  
Min Ji ◽  
Haiyan Miao ◽  
Qi Jiao ◽  
Qian Huang ◽  
Zuohua Huang

Author(s):  
Chenran Ye ◽  
Gaofeng Wang ◽  
Yuanqi Fang ◽  
Chengbiao Ma ◽  
Liang Zhong ◽  
...  

In concepts of integrated design of combustor and turbine, an annular combustor model is developed and featured with multiple oblique-injecting swirling injectors to introduce gyratory flow motion in the combustion chamber. The ignition process is experimentally investigated to study the effects of introducing circumferential velocity component Uc to the light-round sequence. Experiments are carried out with premixed propane/air mixture in ambient conditions. The light-round sequence is recorded by a high-speed camera, which provides detailed flame azimuthal positions during the sequence and gives access to the light-round time τ and the circumferential flame propagation speed Sc. The results have also been compared with that obtained from a straight-injecting annular combustor. The effects of bulk velocity Ub, thermal power P and equivalence ratio Φ are also explored. Due to the gyratory flow motion induced by oblique injection, the flame fronts only propagate along the direction of circumferential flow. Both of the circumferential flame propagation speed increase with increasing bulk velocity in two injection types. It seems mainly to depend on bulk velocity, regardless of Φ, in oblique-injecting combustor when compared with the straight one. It indicates that the circumferential velocity component would play a dominant role in light-round sequence when it is sufficient higher than the displacement flame speed.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Jianzhong Li ◽  
Kaichen Zhang ◽  
Wei Li ◽  
Li Yuan

A simplified single channel wave rotor combustor (WRC) experimental rig was established, in which the spoilers with different blockage ratios (BR) could be conveniently installed and disassembled. The spoilers were firstly used for WRC to improve the pressure rise. The effects of different blockage ratios on the pressure rise and flame acceleration characteristics in a single channel of the WRC were investigated. The addition of spoilers could remarkably improve the pressure rise and flame propagation speed in a single channel of the WRC. While the blockage ratio of the spoiler increases, both pressure rise and mean flame propagation speed are improved. When the spoilers with a blockage ratio of 38.91% are used, the peak pressure increases by 200% compared to that of WRC without the spoilers. When the spoilers of different blockage ratios (23.35%, 31.13%, and 38.91%) are used, it is found that the flame propagation speed is significantly improved with the increasing of the blockage ratio. Specifically, the maximum flame propagation speed reaches 55 m/s, and the maximum mean flame propagation speed is 36.95 m/s. Furthermore, combustion becomes more intense, and the flame is brighter around the spoiler.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5039
Author(s):  
Lei Zhou ◽  
Xiaojun Zhang ◽  
Lijia Zhong ◽  
Jie Yu

Knocking is a destructive and abnormal combustion phenomenon that hinders modern spark ignition (SI) engine technologies. However, the in-depth mechanism of a single-factor influence on knocking has not been well studied. Thus, the major aim of the present study is to study the effects of flame propagation velocity and turbulence intensity on end-gas auto-ignition through a large eddy simulation (LES) and a decoupling methodology in a downsized gasoline engine. The mechanisms of end-gas auto-ignition as well as strong pressure oscillation are qualitatively analyzed. It is observed that both flame propagation velocity and turbulence have a non-monotonic effect on knocking intensity. The competitive relationship between flame propagation velocity and ignition delay of the end gas is the primary reason responding to this phenomenon. A higher flame speed leads to an increase in the heat release rate in the cylinder, and consequently, quicker increases in the temperature and pressure of the unburned end-gas mixture are obtained, leading to end-gas auto-ignition. Further, the coupling of a pressure wave and an auto-ignition flame front results in super-knocking with a maximum peak of pressure of 31 MPa. Although the turbulence indirectly influences the end-gas auto-ignition by affecting the flame propagation velocity, it can accelerate the dissipation of radicals and heat in the end gas, which significantly influences knocking intensity. Moreover, it is found that the effect of turbulence is more pronounced than that of flame propagation velocity in inhibiting knocking. It can be concluded that the intensity of the pressure oscillation depends on the unburned mixture mass as well as the local thermodynamic state induced by flame propagation and turbulence, with mutual interactions. The present work is expected to provide valuable perspective for inhibiting super-knocking of an SI gasoline engine.


2018 ◽  
Vol 32 (11) ◽  
pp. 5501-5509 ◽  
Author(s):  
Hee June Kim ◽  
Kyuho Van ◽  
Kee Man Lee ◽  
Dae Keun Lee ◽  
Young Tae Guahk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document