Stochastic Crashworthiness Optimization Accounting for Simulation Noise

2021 ◽  
pp. 1-15
Author(s):  
Seyed Saeed Ahmadisoleymani ◽  
Samy Missoum

Abstract Finite element-based crashworthiness optimization is extensively used to improve the safety of motor vehicles. However, the responses of crash simulations are characterized by a high level of numerical noise, which can hamper the blind use of surrogate-based design optimization methods. It is therefore essential to account for the noise-induced uncertainty when performing optimization. For this purpose, a surrogate, referred to as Non-Deterministic Kriging (NDK), can be used. It models the noise as a non-stationary stochastic process, which is added to a traditional deterministic kriging surrogate. Based on the NDK surrogate, this study proposes an optimization algorithm tailored to account for both epistemic uncertainty, due to the lack of data, and irreducible aleatory uncertainty, due to the simulation noise. The variances are included within an extension of the well-known expected improvement infill criterion referred to as Modified Augmented Expected Improvement (MAEI). Because the proposed optimization scheme requires an estimate of the aleatory variance, it is approximated through a regression kriging, which is iteratively refined. The proposed algorithm is tested on a set of analytical functions and applied to the optimization of an Occupant Restraint System (ORS) during a crash.

Author(s):  
Seyed Saeed Ahmadisoleymani ◽  
Samy Missoum

Abstract Vehicle crash simulations are notoriously costly and noisy. When performing crashworthiness optimization, it is therefore important to include available information to quantify the noise in the optimization. For this purpose, a stochastic kriging can be used to account for the uncertainty due to the simulation noise. It is done through the addition of a non-stationary stochastic process to the deterministic kriging formulation. This stochastic kriging, which can also be used to include the effect of random non-controllable parameters, can then be used for surrogate-based optimization. In this work, a stochastic kriging-based optimization algorithm is proposed with an infill criterion referred to as the Augmented Expected Improvement, which, unlike its deterministic counterpart the Expect Improvement, accounts for the presence of irreducible aleatory variance due to noise. One of the key novelty of the proposed algorithm stems from the approximation of the aleatory variance and its update during the optimization. The proposed approach is applied to the optimization of two problems including an analytical function and a crashwor-thiness problem where the components of an occupant restraint system of a vehicle are optimized.


Author(s):  
Seyed Saeed Ahmadisoleymani ◽  
Samy Missoum

Abstract Finite element-based crashworthiness optimization is nowadays extensively used to improve the safety of vehicles. However, the responses of a crash simulation are notoriously noisy. In addition, the actual or simulated responses during a crash can be highly sensitive to uncertainties. These uncertainties appear in various forms such as uncontrollable random parameters (e.g., impact conditions). To address these challenges, an optimization algorithm based on a Stochastic Kriging (SK) and an Augmented Expected Improvement (AEI) infill criterion is proposed. A SK enables the approximation of a response while accounting for the noise-induced aleatory variance. In addition, SK has the advantage of reducing the dimensionality of the problem by implicitly accounting for the influence of random parameters and their contribution to the overall aleatory variance. In the proposed algorithm, the aleatory variance is initially estimated through direct sampling and subsequently approximated by a regression kriging. This aleatory variance approximation, which is refined adaptively, is used for the computation of the infill criterion and probabilistic constraints. The algorithm is implemented on a crashworthiness optimization problem that involves a sled and dummy models subjected to an acceleration pulse. The sled model includes components of a vehicle occupant restraint system such as an airbag, seatbelt, and steering column. In all problems considered, the objective function is the probability of traumatic brain injury, which is computed through the Brain Injury Criterion (BrIC) and a logistic injury risk model. In some cases, probabilistic constraints corresponding to other types of bodily injuries such as thoracic injury are added to the optimization problem. The design variables correspond to the properties of the occupant restraint system (e.g., loading curve that dictates the airbag vent area versus pressure). In addition to the inherent simulation noise, uncertainties in the loading conditions are introduced in the form of a random scaling factor of the acceleration pulse.


2021 ◽  
pp. 172-181
Author(s):  
Oksana Y. Vasileva ◽  
Marina V. Nikulina Nikulina ◽  
Juri I. Platov Platov

The article deals with the problem of selecting efficient ships by the feasibility study in which brake power, main dimensions, payload, speed and fuel consumption are determined. The necessity of using the proposed selection at the initial stage of the ship's design is justified; the problems that arise at the present time are denoted. The purpose of the article is to propose a criterion for the selection of efficient vessels, "tied" to the operating conditions, based on the marginal cost of the ship. A method for its determination is presented. At the same time, annual revenues and operating costs should be determined by modern methods of business planning for the operation of the fleet. When searching for the parameters of the ship, the optimal fuel consumption is determined. The rest of the costs can be found according to the coefficients "tied" to the fuel consumption and calculated on the basis of existing prototypes. The results of calculations by the proposed method are shown; its merits and opportunities for improvement are noted with the availability of relevant information. The conclusion is made about the convenience and applicability of the proposed option for selecting efficient ship for the feasibility study based on optimization methods for determining the parameters of vessels under conditions of a high level of use of information technologies.


2010 ◽  
Vol 102-104 ◽  
pp. 74-78
Author(s):  
Bin Gao ◽  
Xiu Rong Nan ◽  
Bai Zhong Wu

The suction plastic forming process for in-mold decoration plastic sheet has been the best process for thin-shell plastic exterior decoration parts. But the suction plastic forming products still suffers from the uneven thickness. Based on the general finite element analysis software POLYFLOW for viscoelastic fluid, a set of optimization methods for suction plastic forming process of in-mold decoration plastic sheet is introduced in this paper to reduce the uneven level of thickness. These methods include establishing process optimization scheme, building mesh model, selecting the material constitutive model and determining its parameters, imposing boundary conditions and blowing pressure, and applying the mold movement. Finally, the optimized suction plastic forming process is used to produce the in-mold decoration plastic rear bumper sample of an automobile, and the results show that optimized process is effective and applicable.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Tian-Syung Lan

Surface roughness is often considered the main purpose in contemporary computer numerical controlled (CNC) machining industry. Most existing optimization researches for CNC finish turning were either accomplished within certain manufacturing circumstances or achieved through numerous equipment operations. Therefore, a general deduction optimization scheme is deemed to be necessary for the industry. In this paper, the cutting depth, feed rate, speed, and tool nose runoff with low, medium, and high level are considered to optimize the surface roughness for finish turning based onL9(34)orthogonal array. Additionally, nine fuzzy control rules using triangle membership function with respective to five linguistic grades for surface roughness are constructed. Considering four input and twenty output intervals, the defuzzification using center of gravity is then completed. Thus, the optimum general fuzzy linguistic parameters can then be received. The confirmation experiment result showed that the surface roughness from the fuzzy linguistic optimization parameters is significantly advanced compared to that from the benchmark. This paper certainly proposes a general optimization scheme using orthogonal array fuzzy linguistic approach to the surface roughness for CNC turning with profound insight.


1966 ◽  
Vol 44 (24) ◽  
pp. 3031-3050 ◽  
Author(s):  
J. Pitha ◽  
R. Norman Jones

A comparison has been made of seven numerical methods of fitting infrared absorption band envelopes with analytical functions using nonlinear least squares approximations. Gauss and Cauchy (Lorentz) band shape functions are used, and also sum and product combinations of the two. The methods have been compared with respect to both the degree of convergence and to the computation time needed to achieve an acceptable fit.The most effective method has matched the overlap envelope of a steroid spectrum containing 16 bands; this necessitated the optimization of 65 variables. More complex spectra can be dealt with by a "moving subspace" modification in which only the parameters of a group of adjacent bands are adjusted at one time. Automatic computer programs have been written for five of the methods, and for the moving subspace modification. These will be published elsewhere.If the computed curve is convoluted with the spectral slit function before making the least squares calculations, the distortion of the observed spectrum caused by the finite spectral slit width can be corrected. In some cases this method of diminishing the slit distortion is better than direct methods, particularly when dealing with strongly overlapped bands.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2830
Author(s):  
Mitra Pooyandeh ◽  
Insoo Sohn

The network edge is becoming a new solution for reducing latency and saving bandwidth in the Internet of Things (IoT) network. The goal of the network edge is to move computation from cloud servers to the edge of the network near the IoT devices. The network edge, which needs to make smart decisions with a high level of response time, needs intelligence processing based on artificial intelligence (AI). AI is becoming a key component in many edge devices, including cars, drones, robots, and smart IoT devices. This paper describes the role of AI in a network edge. Moreover, this paper elaborates and discusses the optimization methods for an edge network based on AI techniques. Finally, the paper considers the security issue as a major concern and prospective approaches to solving this issue in an edge network.


2020 ◽  
Vol 209 ◽  
pp. 06008
Author(s):  
Dmitrii Iakubovskii ◽  
Dmitry Krupenev

Analysis of domestic and foreign software systems for assessing the resource adequacy showed a variety of models and methods used in them. Many software systems use both linear and nonlinear models, these models are optimized according to various criteria to simulate the operation of the system. As tools for solving, software usually use commercial high-level modelling systems for mathematical optimization. However, in addition to the existing ready-made commercial solutions, the authors consider the effectiveness of optimization methods, as well as their parallelized versions, which can be independently implemented and applied as a solver for a specific problem. As a result, it was confirmed that these methods can be used to solve the problem, but they are less effective relative to a commercial solver. From the point of view of accuracy and resources spent on calculations, the most effective of the independently implemented methods turned out to be the parallelized method of differential evolution, which was confirmed by numerical experiments on small systems.


2021 ◽  
Author(s):  
◽  
Mashall Aryan

<p>The solution to many science and engineering problems includes identifying the minimum or maximum of an unknown continuous function whose evaluation inflicts non-negligible costs in terms of resources such as money, time, human attention or computational processing. In such a case, the choice of new points to evaluate is critical. A successful approach has been to choose these points by considering a distribution over plausible surfaces, conditioned on all previous points and their evaluations. In this sequential bi-step strategy, also known as Bayesian Optimization, first a prior is defined over possible functions and updated to a posterior in the light of available observations. Then using this posterior, namely the surrogate model, an infill criterion is formed and utilized to find the next location to sample from. By far the most common prior distribution and infill criterion are Gaussian Process and Expected Improvement, respectively.    The popularity of Gaussian Processes in Bayesian optimization is partially due to their ability to represent the posterior in closed form. Nevertheless, the Gaussian Process is afflicted with several shortcomings that directly affect its performance. For example, inference scales poorly with the amount of data, numerical stability degrades with the number of data points, and strong assumptions about the observation model are required, which might not be consistent with reality. These drawbacks encourage us to seek better alternatives. This thesis studies the application of Neural Networks to enhance Bayesian Optimization. It proposes several Bayesian optimization methods that use neural networks either as their surrogates or in the infill criterion.    This thesis introduces a novel Bayesian Optimization method in which Bayesian Neural Networks are used as a surrogate. This has reduced the computational complexity of inference in surrogate from cubic (on the number of observation) in GP to linear. Different variations of Bayesian Neural Networks (BNN) are put into practice and inferred using a Monte Carlo sampling. The results show that Monte Carlo Bayesian Neural Network surrogate could performed better than, or at least comparably to the Gaussian Process-based Bayesian optimization methods on a set of benchmark problems.  This work develops a fast Bayesian Optimization method with an efficient surrogate building process. This new Bayesian Optimization algorithm utilizes Bayesian Random-Vector Functional Link Networks as surrogate. In this family of models the inference is only performed on a small subset of the entire model parameters and the rest are randomly drawn from a prior. The proposed methods are tested on a set of benchmark continuous functions and hyperparameter optimization problems and the results show the proposed methods are competitive with state-of-the-art Bayesian Optimization methods.  This study proposes a novel Neural network-based infill criterion. In this method locations to sample from are found by minimizing the joint conditional likelihood of the new point and parameters of a neural network. The results show that in Bayesian Optimization methods with Bayesian Neural Network surrogates, this new infill criterion outperforms the expected improvement.   Finally, this thesis presents order-preserving generative models and uses it in a variational Bayesian context to infer Implicit Variational Bayesian Neural Network (IVBNN) surrogates for a new Bayesian Optimization. This new inference mechanism is more efficient and scalable than Monte Carlo sampling. The results show that IVBNN could outperform Monte Carlo BNN in Bayesian optimization of hyperparameters of machine learning models.</p>


Sign in / Sign up

Export Citation Format

Share Document