Transferable Pipeline Rupture Detection Using Multiple Artificial Intelligence Classifiers During Transient Operations

Author(s):  
Christopher Macdonald ◽  
Jaehyun Yang ◽  
Shawn Learn ◽  
Simon S. Park ◽  
Ronald J. Hugo

Abstract There are several challenges associated with existing pipeline rupture detection systems, including an inability to accurately detect during transient conditions (such as changes in pump operating points), an inability to easily transfer from one pipeline configuration to another, and relatively slow response times. To address these challenges, we employ multiple Artificial Intelligence (AI) classifiers that rely on pattern recognition instead of traditional operator-set thresholds. AI techniques, consisting of two-dimensional (2D) Convolutional Neural Networks (CNN) and Adaptive Neuro Fuzzy Interface Systems (ANFIS), are used to mimic processes performed by operators during a rupture event. This includes both visualization (using CNN) and rule-based decision making (using ANFIS). The system provides a level of reasoning to an operator through the use of rule-based AI. Pump station sensor data is non-dimensionalized prior to AI processing, enabling pipeline configurations outside of the training data set, independent of geometry, length, and medium. AI algorithms undergo testing and training using two data sets: laboratory-collected flow loop data that mimics transient pump-station operations and real operator data that include simulated ruptures using the Real Time Transient Model (RTTM). The multiple AI classifier results are fused together to provide higher reliability especially detecting ruptures from pipeline data not used in the training process.

Author(s):  
Christopher MacDonald ◽  
Michael Yang ◽  
Shawn Learn ◽  
Ron Hugo ◽  
Simon Park

Abstract There are several challenges associated with existing rupture detection systems such as their inability to accurately detect during transient (such as pump dynamics) conditions, delayed responses and their inability to transfer models to different pipeline configurations easily. To address these challenges, we employ multiple Artificial Intelligence (AI) classifiers that rely on pattern recognitions instead of traditional operator-set thresholds. AI techniques, consisting of two-dimensional (2D) Convolutional Neural Networks (CNN) and Adaptive Neuro Fuzzy Interface Systems (ANFIS), are used to mimic processes performed by operators during a rupture event. This includes both visualization (using CNN) and rule-based decision making (using ANFIS). The system provides a level of reasoning to an operator through the use of the rule-based AI system. Pump station sensor data is non-dimensionalized prior to AI processing, enabling application to pipeline configurations outside of the training data set. AI algorithms undergo testing and training using two data sets: laboratory-collected data that mimics transient pump-station operations and real operator data that includes Real Time Transient Model (RTTM) simulated ruptures. The use of non-dimensional sensor data enables the system to detect ruptures from pipeline data not used in the training process.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 825 ◽  
Author(s):  
Fadi Al Machot ◽  
Mohammed R. Elkobaisi ◽  
Kyandoghere Kyamakya

Due to significant advances in sensor technology, studies towards activity recognition have gained interest and maturity in the last few years. Existing machine learning algorithms have demonstrated promising results by classifying activities whose instances have been already seen during training. Activity recognition methods based on real-life settings should cover a growing number of activities in various domains, whereby a significant part of instances will not be present in the training data set. However, to cover all possible activities in advance is a complex and expensive task. Concretely, we need a method that can extend the learning model to detect unseen activities without prior knowledge regarding sensor readings about those previously unseen activities. In this paper, we introduce an approach to leverage sensor data in discovering new unseen activities which were not present in the training set. We show that sensor readings can lead to promising results for zero-shot learning, whereby the necessary knowledge can be transferred from seen to unseen activities by using semantic similarity. The evaluation conducted on two data sets extracted from the well-known CASAS datasets show that the proposed zero-shot learning approach achieves a high performance in recognizing unseen (i.e., not present in the training dataset) new activities.


Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. E41-E46 ◽  
Author(s):  
Laurens Beran ◽  
Barry Zelt ◽  
Leonard Pasion ◽  
Stephen Billings ◽  
Kevin Kingdon ◽  
...  

We have developed practical strategies for discriminating between buried unexploded ordnance (UXO) and metallic clutter. These methods are applicable to time-domain electromagnetic data acquired with multistatic, multicomponent sensors designed for UXO classification. Each detected target is characterized by dipole polarizabilities estimated via inversion of the observed sensor data. The polarizabilities are intrinsic target features and so are used to distinguish between UXO and clutter. We tested this processing with four data sets from recent field demonstrations, with each data set characterized by metrics of data and model quality. We then developed techniques for building a representative training data set and determined how the variable quality of estimated features affects overall classification performance. Finally, we devised a technique to optimize classification performance by adapting features during target prioritization.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
R Haneef ◽  
S Fuentes ◽  
R Hrzic ◽  
S Fosse-Edorh ◽  
S Kab ◽  
...  

Abstract Background The use of artificial intelligence is increasing to estimate and predict health outcomes from large data sets. The main objectives were to develop two algorithms using machine learning techniques to identify new cases of diabetes (case study I) and to classify type 1 and type 2 (case study II) in France. Methods We selected the training data set from a cohort study linked with French national Health database (i.e., SNDS). Two final datasets were used to achieve each objective. A supervised machine learning method including eight following steps was developed: the selection of the data set, case definition, coding and standardization of variables, split data into training and test data sets, variable selection, training, validation and selection of the model. We planned to apply the trained models on the SNDS to estimate the incidence of diabetes and the prevalence of type 1/2 diabetes. Results For the case study I, 23/3468 and for case study II, 14/3481 SNDS variables were selected based on an optimal balance between variance explained and using the ReliefExp algorithm. We trained four models using different classification algorithms on the training data set. The Linear Discriminant Analysis model performed best in both case studies. The models were assessed on the test datasets and achieved a specificity of 67% and a sensitivity of 62% in case study I, and a specificity of 97 % and sensitivity of 100% in case study II. The case study II model was applied to the SNDS and estimated the prevalence of type 1 diabetes in 2016 in France of 0.3% and for type 2, 4.4%. The case study model I was not applied to the SNDS. Conclusions The case study II model to estimate the prevalence of type 1/2 diabetes has good performance and will be used in routine surveillance. The case study I model to identify new cases of diabetes showed a poor performance due to missing necessary information on determinants of diabetes and will need to be improved for further research.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2018 ◽  
Vol 30 (1) ◽  
pp. 116-128 ◽  
Author(s):  
Stephanie M. Smith ◽  
Ian Krajbich

When making decisions, people tend to choose the option they have looked at more. An unanswered question is how attention influences the choice process: whether it amplifies the subjective value of the looked-at option or instead adds a constant, value-independent bias. To address this, we examined choice data from six eye-tracking studies ( Ns = 39, 44, 44, 36, 20, and 45, respectively) to characterize the interaction between value and gaze in the choice process. We found that the summed values of the options influenced response times in every data set and the gaze-choice correlation in most data sets, in line with an amplifying role of attention in the choice process. Our results suggest that this amplifying effect is more pronounced in tasks using large sets of familiar stimuli, compared with tasks using small sets of learned stimuli.


2021 ◽  
Author(s):  
Louise Bloch ◽  
Christoph M. Friedrich

Abstract Background: The prediction of whether Mild Cognitive Impaired (MCI) subjects will prospectively develop Alzheimer's Disease (AD) is important for the recruitment and monitoring of subjects for therapy studies. Machine Learning (ML) is suitable to improve early AD prediction. The etiology of AD is heterogeneous, which leads to noisy data sets. Additional noise is introduced by multicentric study designs and varying acquisition protocols. This article examines whether an automatic and fair data valuation method based on Shapley values can identify subjects with noisy data. Methods: An ML-workow was developed and trained for a subset of the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. The validation was executed for an independent ADNI test data set and for the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) cohort. The workow included volumetric Magnetic Resonance Imaging (MRI) feature extraction, subject sample selection using data Shapley, Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) for model training and Kernel SHapley Additive exPlanations (SHAP) values for model interpretation. This model interpretation enables clinically relevant explanation of individual predictions. Results: The XGBoost models which excluded 116 of the 467 subjects from the training data set based on their Logistic Regression (LR) data Shapley values outperformed the models which were trained on the entire training data set and which reached a mean classification accuracy of 58.54 % by 14.13 % (8.27 percentage points) on the independent ADNI test data set. The XGBoost models, which were trained on the entire training data set reached a mean accuracy of 60.35 % for the AIBL data set. An improvement of 24.86 % (15.00 percentage points) could be reached for the XGBoost models if those 72 subjects with the smallest RF data Shapley values were excluded from the training data set. Conclusion: The data Shapley method was able to improve the classification accuracies for the test data sets. Noisy data was associated with the number of ApoEϵ4 alleles and volumetric MRI measurements. Kernel SHAP showed that the black-box models learned biologically plausible associations.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 245
Author(s):  
Konstantinos G. Liakos ◽  
Georgios K. Georgakilas ◽  
Fotis C. Plessas ◽  
Paris Kitsos

A significant problem in the field of hardware security consists of hardware trojan (HT) viruses. The insertion of HTs into a circuit can be applied for each phase of the circuit chain of production. HTs degrade the infected circuit, destroy it or leak encrypted data. Nowadays, efforts are being made to address HTs through machine learning (ML) techniques, mainly for the gate-level netlist (GLN) phase, but there are some restrictions. Specifically, the number and variety of normal and infected circuits that exist through the free public libraries, such as Trust-HUB, are based on the few samples of benchmarks that have been created from circuits large in size. Thus, it is difficult, based on these data, to develop robust ML-based models against HTs. In this paper, we propose a new deep learning (DL) tool named Generative Artificial Intelligence Netlists SynthesIS (GAINESIS). GAINESIS is based on the Wasserstein Conditional Generative Adversarial Network (WCGAN) algorithm and area–power analysis features from the GLN phase and synthesizes new normal and infected circuit samples for this phase. Based on our GAINESIS tool, we synthesized new data sets, different in size, and developed and compared seven ML classifiers. The results demonstrate that our new generated data sets significantly enhance the performance of ML classifiers compared with the initial data set of Trust-HUB.


2021 ◽  
Author(s):  
Ying Hou ◽  
Yi-Hong Zhang ◽  
Jie Bao ◽  
Mei-Ling Bao ◽  
Guang Yang ◽  
...  

Abstract Purpose: A balance between preserving urinary continence and achievement of negative margins is of clinical relevance while implementary difficulty. Preoperatively accurate detection of prostate cancer (PCa) extracapsular extension (ECE) is thus crucial for determining appropriate treatment options. We aimed to develop and clinically validate an artificial intelligence (AI)-assisted tool for the detection of ECE in patients with PCa using multiparametric MRI. Methods: 849 patients with localized PCa underwent multiparametric MRI before radical prostatectomy were retrospectively included from two medical centers. The AI tool was built on a ResNeXt network embedded with a spatial attention map of experts’ prior knowledges (PAGNet) from 596 training data sets. The tool was validated in 150 internal and 103 external data sets, respectively; and its clinical applicability was compared with expert-based interpretation and AI-expert interaction.Results: An index PAGNet model using a single-slice image yielded the highest areas under the receiver operating characteristic curve (AUC) of 0.857 (95% confidence interval [CI], 0.827-0.884), 0.807 (95% CI, 0.735-0.867) and 0.728 (95% CI, 0.631-0.811) in the training, internal test and external test cohorts, compared to the conventional ResNeXt networks. For experts, the inter-reader agreement was observed in only 437/849 (51.5%) patients with a Kappa value 0.343. And the performance of two experts (AUC, 0.632 to 0.741 vs 0.715 to 0.857) was lower (paired comparison, all p values < 0.05) than that of AI assessment. When expert’ interpretations were adjusted by the AI assessments, the performance of both two experts was improved.Conclusion: Our AI tool, showing improved accuracy, offers a promising alternative to human experts for imaging staging of PCa ECE using multiparametric MRI.


2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


Sign in / Sign up

Export Citation Format

Share Document