Practical strategies for classification of unexploded ordnance

Geophysics ◽  
2013 ◽  
Vol 78 (1) ◽  
pp. E41-E46 ◽  
Author(s):  
Laurens Beran ◽  
Barry Zelt ◽  
Leonard Pasion ◽  
Stephen Billings ◽  
Kevin Kingdon ◽  
...  

We have developed practical strategies for discriminating between buried unexploded ordnance (UXO) and metallic clutter. These methods are applicable to time-domain electromagnetic data acquired with multistatic, multicomponent sensors designed for UXO classification. Each detected target is characterized by dipole polarizabilities estimated via inversion of the observed sensor data. The polarizabilities are intrinsic target features and so are used to distinguish between UXO and clutter. We tested this processing with four data sets from recent field demonstrations, with each data set characterized by metrics of data and model quality. We then developed techniques for building a representative training data set and determined how the variable quality of estimated features affects overall classification performance. Finally, we devised a technique to optimize classification performance by adapting features during target prioritization.

2019 ◽  
Author(s):  
Jacob Schreiber ◽  
Jeffrey Bilmes ◽  
William Stafford Noble

AbstractMotivationRecent efforts to describe the human epigenome have yielded thousands of uniformly processed epigenomic and transcriptomic data sets. These data sets characterize a rich variety of biological activity in hundreds of human cell lines and tissues (“biosamples”). Understanding these data sets, and specifically how they differ across biosamples, can help explain many cellular mechanisms, particularly those driving development and disease. However, due primarily to cost, the total number of assays that can be performed is limited. Previously described imputation approaches, such as Avocado, have sought to overcome this limitation by predicting genome-wide epigenomics experiments using learned associations among available epigenomic data sets. However, these previous imputations have focused primarily on measurements of histone modification and chromatin accessibility, despite other biological activity being crucially important.ResultsWe applied Avocado to a data set of 3,814 tracks of data derived from the ENCODE compendium, spanning 400 human biosamples and 84 assays. The resulting imputations cover measurements of chromatin accessibility, histone modification, transcription, and protein binding. We demonstrate the quality of these imputations by comprehensively evaluating the model’s predictions and by showing significant improvements in protein binding performance compared to the top models in an ENCODE-DREAM challenge. Additionally, we show that the Avocado model allows for efficient addition of new assays and biosamples to a pre-trained model, achieving high accuracy at predicting protein binding, even with only a single track of training data.AvailabilityTutorials and source code are available under an Apache 2.0 license at https://github.com/jmschrei/[email protected] or [email protected]


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 825 ◽  
Author(s):  
Fadi Al Machot ◽  
Mohammed R. Elkobaisi ◽  
Kyandoghere Kyamakya

Due to significant advances in sensor technology, studies towards activity recognition have gained interest and maturity in the last few years. Existing machine learning algorithms have demonstrated promising results by classifying activities whose instances have been already seen during training. Activity recognition methods based on real-life settings should cover a growing number of activities in various domains, whereby a significant part of instances will not be present in the training data set. However, to cover all possible activities in advance is a complex and expensive task. Concretely, we need a method that can extend the learning model to detect unseen activities without prior knowledge regarding sensor readings about those previously unseen activities. In this paper, we introduce an approach to leverage sensor data in discovering new unseen activities which were not present in the training set. We show that sensor readings can lead to promising results for zero-shot learning, whereby the necessary knowledge can be transferred from seen to unseen activities by using semantic similarity. The evaluation conducted on two data sets extracted from the well-known CASAS datasets show that the proposed zero-shot learning approach achieves a high performance in recognizing unseen (i.e., not present in the training dataset) new activities.


Author(s):  
Christopher MacDonald ◽  
Michael Yang ◽  
Shawn Learn ◽  
Ron Hugo ◽  
Simon Park

Abstract There are several challenges associated with existing rupture detection systems such as their inability to accurately detect during transient (such as pump dynamics) conditions, delayed responses and their inability to transfer models to different pipeline configurations easily. To address these challenges, we employ multiple Artificial Intelligence (AI) classifiers that rely on pattern recognitions instead of traditional operator-set thresholds. AI techniques, consisting of two-dimensional (2D) Convolutional Neural Networks (CNN) and Adaptive Neuro Fuzzy Interface Systems (ANFIS), are used to mimic processes performed by operators during a rupture event. This includes both visualization (using CNN) and rule-based decision making (using ANFIS). The system provides a level of reasoning to an operator through the use of the rule-based AI system. Pump station sensor data is non-dimensionalized prior to AI processing, enabling application to pipeline configurations outside of the training data set. AI algorithms undergo testing and training using two data sets: laboratory-collected data that mimics transient pump-station operations and real operator data that includes Real Time Transient Model (RTTM) simulated ruptures. The use of non-dimensional sensor data enables the system to detect ruptures from pipeline data not used in the training process.


2015 ◽  
Vol 4 (1) ◽  
pp. 61-81
Author(s):  
Mohammad Masoud Javidi

Multi-label classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Problems of this type are ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, and thriller. Most algorithms on multi-label classification learning are designed for balanced data and don’t work well on imbalanced data. On the other hand, in real applications, most datasets are imbalanced. Therefore, we focused to improve multi-label classification performance on imbalanced datasets. In this paper, a state-of-the-art multi-label classification algorithm, which called IBLR_ML, is employed. This algorithm is produced from combination of k-nearest neighbor and logistic regression algorithms. Logistic regression part of this algorithm is combined with two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-ELR. In this paper, for the first time, the ensemble bagging method whit stable learning as the base learner and imbalanced data sets as the training data is examined. Finally, to evaluate the proposed methods; they are implemented in JAVA language. Experimental results show the effectiveness of proposed methods. Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, Stable algorithm, Logistic regression, Bagging, Boosting


Author(s):  
Christopher Macdonald ◽  
Jaehyun Yang ◽  
Shawn Learn ◽  
Simon S. Park ◽  
Ronald J. Hugo

Abstract There are several challenges associated with existing pipeline rupture detection systems, including an inability to accurately detect during transient conditions (such as changes in pump operating points), an inability to easily transfer from one pipeline configuration to another, and relatively slow response times. To address these challenges, we employ multiple Artificial Intelligence (AI) classifiers that rely on pattern recognition instead of traditional operator-set thresholds. AI techniques, consisting of two-dimensional (2D) Convolutional Neural Networks (CNN) and Adaptive Neuro Fuzzy Interface Systems (ANFIS), are used to mimic processes performed by operators during a rupture event. This includes both visualization (using CNN) and rule-based decision making (using ANFIS). The system provides a level of reasoning to an operator through the use of rule-based AI. Pump station sensor data is non-dimensionalized prior to AI processing, enabling pipeline configurations outside of the training data set, independent of geometry, length, and medium. AI algorithms undergo testing and training using two data sets: laboratory-collected flow loop data that mimics transient pump-station operations and real operator data that include simulated ruptures using the Real Time Transient Model (RTTM). The multiple AI classifier results are fused together to provide higher reliability especially detecting ruptures from pipeline data not used in the training process.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Feng Hu ◽  
Xiao Liu ◽  
Jin Dai ◽  
Hong Yu

The classification problem for imbalance data is paid more attention to. So far, many significant methods are proposed and applied to many fields. But more efficient methods are needed still. Hypergraph may not be powerful enough to deal with the data in boundary region, although it is an efficient tool to knowledge discovery. In this paper, the neighborhood hypergraph is presented, combining rough set theory and hypergraph. After that, a novel classification algorithm for imbalance data based on neighborhood hypergraph is developed, which is composed of three steps: initialization of hyperedge, classification of training data set, and substitution of hyperedge. After conducting an experiment of 10-fold cross validation on 18 data sets, the proposed algorithm has higher average accuracy than others.


2014 ◽  
Vol 11 (2) ◽  
Author(s):  
Pavol Král’ ◽  
Lukáš Sobíšek ◽  
Mária Stachová

Data quality can be seen as a very important factor for the validity of information extracted from data sets using statistical or data mining procedures. In the paper we propose a description of data quality allowing us to characterize data quality of the whole data set, as well as data quality of particular variables and individual cases. On the basis of the proposed description, we define a distance based measure of data quality for individual cases as a distance of the cases from the ideal one. Such a measure can be used as additional information for preparation of a training data set, fitting models, decision making based on results of analyses etc. It can be utilized in different ways ranging from a simple weighting function to belief functions.


2018 ◽  
Vol 10 (10) ◽  
pp. 1649 ◽  
Author(s):  
Hao Li ◽  
Pedram Ghamisi ◽  
Uwe Soergel ◽  
Xiao Zhu

Recently, convolutional neural networks (CNN) have been intensively investigated for the classification of remote sensing data by extracting invariant and abstract features suitable for classification. In this paper, a novel framework is proposed for the fusion of hyperspectral images and LiDAR-derived elevation data based on CNN and composite kernels. First, extinction profiles are applied to both data sources in order to extract spatial and elevation features from hyperspectral and LiDAR-derived data, respectively. Second, a three-stream CNN is designed to extract informative spectral, spatial, and elevation features individually from both available sources. The combination of extinction profiles and CNN features enables us to jointly benefit from low-level and high-level features to improve classification performance. To fuse the heterogeneous spectral, spatial, and elevation features extracted by CNN, instead of a simple stacking strategy, a multi-sensor composite kernels (MCK) scheme is designed. This scheme helps us to achieve higher spectral, spatial, and elevation separability of the extracted features and effectively perform multi-sensor data fusion in kernel space. In this context, a support vector machine and extreme learning machine with their composite kernels version are employed to produce the final classification result. The proposed framework is carried out on two widely used data sets with different characteristics: an urban data set captured over Houston, USA, and a rural data set captured over Trento, Italy. The proposed framework yields the highest OA of 92 . 57 % and 97 . 91 % for Houston and Trento data sets. Experimental results confirm that the proposed fusion framework can produce competitive results in both urban and rural areas in terms of classification accuracy, and significantly mitigate the salt and pepper noise in classification maps.


Author(s):  
D. R. Martinelli ◽  
Samir N. Shoukry

A neural network modeling approach is used to identify concrete specimens that contain internal cracks. Different types of neural nets are used and their performance is evaluated. Correct classification of the signals received from a cracked specimen could be achieved with an accuracy of 75 percent for the test set and 95 percent for the training set. These recognition rates lead to the correct classification of all the individual test specimens. Although some neural net architectures may show high performance with a particular training data set, their results might be inconsistent. In situations in which the number of data sets is small, consistent performance of a neural network may be achieved by shuffling the training and testing data sets.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


Sign in / Sign up

Export Citation Format

Share Document