Impingement Cooling by Multiple Asymmetric Orifice Jets

2021 ◽  
Author(s):  
Chunyu Zhang ◽  
Yanyan Liu ◽  
Taahir Bhaiyat ◽  
Sjouke Schekman ◽  
Tian Jian Lu ◽  
...  

Abstract This study presents impingement cooling from a flat plate by multiple asymmetric jets. Such jets are discharged through blunt-edge inline orifice holes with a thickness-to-diameter ratio of t/Dj = 0.5 and a jet-to-jet spacing of T/Dj = 4.0, at the Reynolds number of 20,000. Firstly, fluidic features are established both in free exit and with impingement, at varying short target spacing (e.g., H/Dj = 4.0). Secondly, thermal characteristics of the jet impingement are elucidated. Results demonstrate that, due to a skewed incidence of the coolant stream upstream of concave orifice holes, the resulting multiple orifice jets are asymmetric and skewed relative to the orifice axis. These results mimic multiple fluidically inclined jets. However, asymmetric entrainment that takes place causes faster mixing with the surrounding fluid at rest as well as faster decay of momentum. This shows more effective cooling from a flat plate for the relatively short H/Dj range than conventional symmetric orifice and nozzle jets.

Author(s):  
Marcel Le´on De Paz ◽  
B. A. Jubran

Jet impingement cooling remains one of the key methods in various high-end cooling applications as it can induce higher heat transfer rates. The objective of this preliminary investigation is to shed some light on micro-impingement cooling and assess the accuracy for a future 3-dimensional turbine blade model. For the purpose of this study, several micro-jet impingement cases are modeled in Gambit and iterated with Fluent. The reference model consists of a single 500μm cylindrical nozzle impinging on a constant temperature flat plate. Conducive results were found on the effects of turbulence model, Reynolds number, and H/D ratio for the Nusselt distribution on the flat plate. The Reynolds numbers iterated were: 2000, 3000, 4000, 5000, and 6000. The different H/D ratios modeled were: 6, 5, 4, 3, 2, 1. In general, it was observed that a higher Reynolds number increased the heat transfer on the plate, but the jet to target spacing had no significant impact on it. All results were validated via comparison with several published experimental data, the deviation margins indicated a good agreement.


1986 ◽  
Vol 108 (3) ◽  
pp. 540-546 ◽  
Author(s):  
H. J. Carper ◽  
J. J. Saavedra ◽  
T. Suwanprateep

Results are presented from an experimental study conducted to determine the average convective heat transfer coefficient for the side of a rotating disk, with an approximately uniform surface temperature, cooled by a single liquid jet of oil impinging normal to the surface. Tests were conducted over a range of jet flow rates, jet temperatures, jet radial positions, and disk angular velocities with various combinations of three jet nozzle and disk diameters. Correlations are presented that relate the average Nusselt number to rotational Reynolds number, jet Reynolds number, jet Prandtl number, and dimensionless jet radial position.


Author(s):  
Todd M. Bandhauer ◽  
David R. Hobby ◽  
Chris Jacobsen ◽  
Dave Sherrer

In a variety of electronic systems, cooling of various components imposes a significant challenge. A major aspect that inhibits the performance of many cooling solutions is the thermal resistance between the chip package and the cooling structure. Due to its low thermal conductivity, the thermal interface material (TIM) layer imposes a significant thermal resistance on the chip to cooling fluid thermal path. Advanced cooling methods that bypass the TIM have shown great potential in research and some specialty applications, yet have not been adopted widely by industry due to challenges associated with practical implementation and economic constraints. One advanced cooling method that can bypass the TIM is jet impingement. The impingement cooling device investigated in the current study is external to the integrated circuit (IC) package and could be easily retrofitted onto any existing microchip, similar to a standard heatsink. Jet impingement cooling has proven effective in previous studies. However, it has been shown that jet-to-jet interference severely degrades thermal performance of an impinging jet array. The present research addresses this challenge by utilizing a flow path geometry that allows for withdrawal of the impinging fluid immediately adjacent to each jet in the array. In this study, a jet impingement cooling solution for high-performance ICs was developed and tested. The cooling device was fabricated using modern advanced manufacturing techniques and consisted of an array of micro-scale impinging jets. A second array of fluid return paths was overlain across the jet array to allow for direct fluid extraction in the immediate vicinity of each jet, and fluid return passages were oriented in parallel to the impinging jets. The following key geometric parameters were utilized in the device: jet diameter (D = 300μm), distance from jet to impinging surface (H/D = 2.5), spacing between jets (S/D = 8), spacing between fluid returns (Sr/D = 8), diameter of fluid returns (Dr/D = 5). The device was mounted to a 2cm × 2cm uniformly heated surface which produced up to 165W and the resulting fluid-to-surface temperature difference was measured at a variety of flow rates. For this study, the device was tested using single-phase water. Jet Reynolds number ranged from 300–1500 and an average heat transfer coefficient of 13,100 W m−2 K−1 was achieved at a Reynolds number of only Red = 305.


2011 ◽  
Vol 148-149 ◽  
pp. 680-683
Author(s):  
Run Peng Sun ◽  
Wei Bing Zhu ◽  
Hong Chen ◽  
Chang Jiang Chen

Three-dimensional numerical study is conducted to investigate the heat transfer characteristics for the flow impingement cooling in the narrow passage based on cooling technology of turbine blade.The effects of the jet Reynolds number, impingement distance and initial cross-flow on heat transfer characteristic are investigated.Results show that when other parameters remain unchanged local heat transfer coefficient increases with increase of jet Reynolds number;overall heat transfer effect is reduced by initial cross-flow;there is an optimal distance to the best effect of heat transfer.


Author(s):  
Anna A. Pavlova ◽  
Michael Amitay

Efficiency of synthetic jet impingement cooling and the mechanisms of heat removal from a constant heat flux surface were investigated experimentally. The effects of jet’s formation frequency and Reynolds number at different nozzle-to-surface distances were investigated and compared to steady jet cooling. It was found that synthetic jets are up to three times more effective than steady jets at the same Reynolds number. For smaller distances, high formation frequency (f = 1200 Hz) synthetic jets remove heat better than low frequency (f = 420 Hz) jets, whereas low frequency jets are more effective at larger distances, with an overlapping region. Using PIV, it was shown that at small distances between the synthetic jet and the heated surface, the higher formation frequency jet is associated with accumulation of vortices before they impinge on the surface. For the lower frequency jet, the wavelength between coherent structures is so large that vortex rings impinge on the surface separately.


Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Öztop

Numerical study of jet impingement cooling of a corrugated surface with water–SiO2 nanofluid of different nanoparticle shapes was performed. The bottom wall is corrugated and kept at constant surface temperature, while the jet emerges from a rectangular slot with cold uniform temperature. The finite volume method is utilized to solve the governing equations. The effects of Reynolds number (between 100 and 500), corrugation amplitude (between 0 and 0.3), corrugation frequency (between 0 and 20), nanoparticle volume fraction (between 0 and 0.04), and nanoparticle shapes (spherical, blade, brick, and cylindrical) on the fluid flow and heat transfer characteristics were studied. Stagnation point and average Nusselt number enhance with Reynolds number and solid particle volume fraction for both flat and corrugated surface configurations. An optimal value for the corrugation amplitude and frequency was found to maximize the average heat transfer at the highest value of Reynolds number. Among various nanoparticle shapes, cylindrical ones perform the best heat transfer characteristics in terms of stagnation and average Nusselt number values. At the highest solid volume concentration of the nanoparticles, heat transfer values are higher for a corrugated surface when compared to a flat surface case.


2014 ◽  
Vol 695 ◽  
pp. 503-507
Author(s):  
Mohamad Nor Musa ◽  
Mohamed Izhar Mohamed Khalid

This study is to investigate the effectiveness of jet impingement cooling system on the turbine blade pressure side. The objective of this study is to determine the mass blowing rate referred to Reynolds number and the nozzle exit to surface distance which will produce the highest cooling effectiveness which will be shown as Nusselt number. A model of CF6-50 blade is made from mild steel and an experiment to study the jet impingement cooling effectiveness on the pressure side of turbine blade is conducted. The parameters that are included in the experiment are the Reynolds number, Re = 646, 1322, 1970 and 2637; and nozzle exit to surface distance, s/d = 4.0 cm, 8.0 cm and 12.0 cm. The results obtained are calculated and graphs for each experiment are made. The result shows that the jet impingement cooling effectiveness are the highest at where the nozzle is pointed and the cooling effectiveness decreases as it travels further away on the blade. The theory of jet impingement cooling is presented and the several factors that affect jet impingement cooling are also discussed.


2016 ◽  
Vol 819 ◽  
pp. 74-77
Author(s):  
Mohamad Nor Musa ◽  
Mohamad Faizal Fauzi

Jet impingement is one of cooling method used in order to achieve high heat transfer coefficient and widely used in industry applications such as drying of textile and film, glass and plastic sheets, cooling of electronic equipment, and heat treatment of metals. In this research, it focused on the effectiveness of the jet impingement cooling system on the convex surface based on mass blowing rate and nozzle exit to surface parameters. The scope of experiment research encompasses are convex surface made of aluminum alloy and diameter 12.5cm. For mass blowing rate parameters, it use ʋjet = 1.98m/s, 3.03m/s, 4.97m/s and 6.00m/s which has Reynolds number range from 643 until 1946. Nozzle exit to surface distance,s/d = 4.0, 8.0 and 12.0. In this experiment model, a major components that involved are a compressor, nozzle, convex surface model, K thermocouple and heater. For the result of the experiment, it is based on the data obtain through a heat transfer coefficient and Nusselt number which the plotted graph focus on the space spacing and Reynolds number parameters. For the graph Nusselt number versus s/d at stagnation point c/d=0, it shown that when the Reynolds number increase, the Nusselt number also increase. In term of effectiveness, the s/d=12.0 has a good effectiveness jet impingement cooling system. For the graph of Nusselt number versus Reynolds at stagnation point, c/d=0, as Reynolds number increase, the Nusselt number increase too. From this experiment the better cooling effect is at Reynolds number, Re=1946. Thus, it can conclude that, effectiveness for jet impingement cooling system on the convex surface occurs at the highest Reynolds number.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Y. Q. Zu ◽  
Y. Y. Yan ◽  
J. Maltson

In this paper, the heat transfer characteristics of a circular air jet vertically impinging on a flat plate near to the nozzle (H/d=1–6, where H is the nozzle-to-target spacing and d is the diameter of the jet) are numerically analyzed. The relative performance of seven turbulent models for predicting this type of flow and heat transfer is investigated by comparing the numerical results with available benchmark experimental data. It is found that the shear-stress transport (SST) k−ω model and the large Eddy simulation (LES) time-variant model can give better predictions for the performance of fluid flow and heat transfer; especially, the SST k−ω model should be the best compromise between computational cost and accuracy. In addition, using the SST k−ω model, the effects of jet Reynolds number (Re), jet plate length-to-jet diameter ratio (L/d), target spacing-to-jet diameter ratio (H/d), and jet plate width-to-jet diameter ratio (W/d) on the local Nusselt number (Nu) of the target plate are examined; a correlation for the stagnation Nu is presented.


Author(s):  
Devaraj K

Abstract: The present computational study involves a flat plate subjected to combined effect of jet impingement and film cooling. A conjugate heat transfer model in conjunction with k-ω SST turbulence model is employed to study the turbulence effects. The effect of Reynolds number varying from 389 to 2140 on static temperature, Nusselt number and film cooling effectiveness has be discussed for the blowing ratios of 0.6, 0.8, 1.0. The variation in the size of vortices formed on the impinging surface with Reynolds number is studied. It has been observed that the local Nusselt number shows a rising trend with the increase in Reynolds number, while the static temperatures follow the downfall in its values. As a result, an enhancement in the effectiveness is observed, which is credited to the capabilities of combined impingement and film cooling. At Reynolds number of 972, the coolant jet is found to be attached to the surface, for this condition the heat transfer phenomena for blowing ratios of 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, 2.4, 2.6 are studied to understand the flow distribution on the plate surface. Keywords: Jet impingement, film cooling, effectiveness, conjugate heat transfer


Sign in / Sign up

Export Citation Format

Share Document