scholarly journals Effect of Blade Stagger Angle on Performance of a Transonic Compressor With Low Hub-Tip Ratio

Author(s):  
Zhao Shi Chun ◽  
Ma Shu Qin ◽  
Wang Zhao Long

The effect of blade stagger angle on the performance of a transonic compressor with low hub-tip ratio is presented in the paper. Because the original single stage compressor failed to achieve the design target, tests were conducted on the compressor with the blades twisted and with the stagger angle reduced. The results of these tests indicate that at the design speed and mass flow, the pressure ratio is 1.339, the efficiency is 0.864, which is 2.2 percent better than the design value and 5 percent better than that of the original single stage. At the same time, the discharge total pressure and temperature profiles are improved substantially. The unevenness of the total pressure profile decreases from 18 to 7 percent and that of the total temperature from 53 to 18 percent.

Author(s):  
Shobhavathy M. Thimmaiah ◽  
Ramesha Gurikelu ◽  
Nisha Sherief

This paper presents the steady state numerical analyses carried out to investigate the effect of forward and backward swept rotor on the overall performance and stability margin of single stage transonic axial flow compressor. Initially, the analyses were carried out on a radially stacked rotor/baseline configuration and obtained the overall performance map of the compressor stage. These results were compared with the available experimental data for validation. Further, investigations were carried out on geometrically modified rotor with six configurations having 5, 10 and 15° forward and backward sweep. A commercial 3-Dimensional CFD package, ANSYS FLUENT was used to compute the complex flow field of transonic compressor rotors. The flow field structures were studied with the help of Mach number total pressure contours. The results of modified rotor geometry indicated that the peak adiabatic efficiency and the total pressure ratio for all the tested forward and backward swept rotor configurations are marginally higher than that of the baseline configuration at all speeds. The operating ranges of all the swept rotor configurations are found to be higher than that of the baseline configuration. The operating range is broader at lower operating speeds than at design speed condition. Rotor with 10° forward sweep and 5° backward sweep indicated the noteworthy improvement in the operating range against the baseline configuration. The stability margin of 11.3, 6.6, 5.2 and 3.5% at 60, 80, 90 and 100% of the design speed respectively compared to the baseline configuration obtained from 10° forward sweep. Rotor with 5° backward sweep showed the stability margin of 12, 4, 3.9 and 3% at 60, 80, 90 and 100% of the design speed respectively compared to the baseline configuration.


Author(s):  
Giovanni A. Brignole ◽  
Florian C. T. Danner ◽  
Hans-Peter Kau

Building on the experience of previous investigations, a casing treatment was developed and applied to an axial transonic compressor stage, in literature referred to as Darmstadt Rotor 1. The aerodynamics of the experimental compressor stage was improved by applying axially orientated semicircular slots to the original plain casing, which both enhanced the operating range and design point efficiency. A gain in total pressure ratio along the entire design speed line was also observed. Within the scope of this study four different axial casing treatments were designed. Their effect on the flow in a transonic axial compressor stage was investigated parametrically using time-resolved 3D-FANS simulations with a mesh of approximately 4.8 · 106 grid points. This research aims to identify correlations between the geometrical cavity design and the changed channel flow. The findings help to formulate parameters for evaluating the performance of casing treatments. These criteria can further be used as target functions in the design optimisation process. The predicted behaviour of the transonic compressor was validated against experiments as well as an alternative numerical model, the non-linear harmonic method. Both confirmed the effect of the slots in raising efficiency as well as moving the design speed line towards higher pressure ratios. In the experiments, the addition of the slots increased the total pressure ratio at stall conditions by more than 5% and reduced mass flow from 87.5% of the design mass flow to less than 77.5% compared to the original geometry.


Author(s):  
Martin W. Mu¨ller ◽  
Heinz-Peter Schiffer ◽  
Chunill Hah

This paper reports on experimental and numerical investigations on circumferential grooves in an axial single-stage transonic compressor. Total pressure ratio and efficiency speedlines were taken at design speed and three off-design conditions. The experiments comprise four different configurations with deep and shallow grooves and variable coverage of the projected rotor axial chord. All casing treatments proved to have a beneficial effect on stall range while maintaining high levels of efficiency, even at off-design operation. Deep grooves extending almost to the trailing edge showed the biggest potential: the mass flow at stall inception for design speed could be strongly reduced, and the operating range could be enlarged by 56.1%. When three shallow grooves were applied to the compressor, the stage efficiency at design speed was shifted to slightly higher values. A possible explanation could be a favorable change in stator aerodynamics due to the reduction of corner separation. For a closer look into the physical effects of grooves on the tip leakage flow, a rotor-only CFD analysis has been carried out using a steady state calculation. A multi-block grid with approximately 1.2 million nodes was used. The numerical simulations reveal strong effects of circumferential grooves on the rotor flow field at tip. Mach-number contours, axial velocity distributions and particle traces for the smooth casing and six deep grooves are presented at stall mass flow. Compared to the smooth wall case, the treated casing significantly reduces blockage in the tip area and weakens the roll-up of the core vortex. These mechanisms prevent an early spillage of low momentum fluid into the adjacent blade passage and delay the onset of rotating stall.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Martin Heinrich ◽  
Rüdiger Schwarze

A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the SSTk-ωturbulence model with rotation/curvature correction and the multiple reference frame approach. The initial validation shows a good agreement between the numerical model and test bench measurements. As a result of the optimization, the average total pressure rise and efficiency are increased by over1.0%compared to the initial designs of the optimization, while the maximum efficiency rise is nearly 2.5% atm˙corr=0.19 kg/s.


Author(s):  
Matthias Rolfes ◽  
Martin Lange ◽  
Konrad Vogeler ◽  
Ronald Mailach

The demand of increasing pressure ratios for modern high pressure compressors leads to decreasing blade heights in the last stages. As tip clearances cannot be reduced to any amount and minimum values might be necessary for safety reasons, the tip clearance ratios of the last stages can reach values notably higher than current norms. This can be intensified by a compressor running in transient operations where thermal differences can lead to further growing clearances. For decades, the detrimental effects of large clearances on an axial compressor’s operating range and efficiency are known and investigated. The ability of circumferential casing grooves in the rotor casing to improve the compressor’s operating range has also been in the focus of research for many years. Their simplicity and ease of installation are one reason for their continuing popularity nowadays, where advanced methods to increase the operating range of an axial compressor are known. In a previous paper [1], three different circumferential groove casing treatments were investigated in a single stage environment in the Low Speed Axial Research Compressor at TU Dresden. One of these grooves was able to notably improve the operating range and the efficiency of the single stage compressor at very large rotor tip clearances (5% of chord length). In this paper, the results of tests with this particular groove type in a three stage environment in the Low Speed Axial Research Compressor are presented. Two different rotor tip clearance sizes of 1.2% and 5% of tip chord length were investigated. At the small tip clearance, the grooves are almost neutral. Only small reductions in total pressure ratio and efficiency compared to the solid wall can be observed. If the compressor runs with large tip clearances it notably benefits from the casing grooves. Both, total pressure and efficiency can be improved by the grooves in a similar extent as in single stage tests. Five-hole probe measurements and unsteady wall pressure measurements show the influence of the groove on the flow field. With the help of numerical investigations the different behavior of the grooves at the two tip clearance sizes will be discussed.


Author(s):  
Harjit S. Hura ◽  
Scott Carson ◽  
Rob Saeidi ◽  
Hyoun-Woo Shin ◽  
Paul Giel

This paper describes the engine and rig design, and test results of an ultra-highly loaded single stage high pressure turbine. In service aviation single stage HPTs typically operate at a total-to-total pressure ratio of less than 4.0. At higher pressure ratios or energy extraction the nozzle and blade both have regions of supersonic flow and shock structures which, if not mitigated, can result in a large loss in efficiency both in the turbine itself and due to interaction with the downstream component which may be a turbine center frame or a low pressure turbine. Extending the viability of the single stage HPT to higher pressure ratios is attractive as it enables a compact engine with less weight, and lower initial and maintenance costs as compared to a two stage HPT. The present work was performed as part of the NASA UEET (Ultra-Efficient Engine Technology) program from 2002 through 2005. The goal of the program was to design and rig test a cooled single stage HPT with a pressure ratio of 5.5 with an efficiency at least two points higher than the state of the art. Preliminary design tools and a design of experiments approach were used to design the flow path. Stage loading and through-flow were set at appropriate levels based on prior experience on high pressure ratio single stage turbines. Appropriate choices of blade aspect ratio, count, and reaction were made based on comparison with similar HPT designs. A low shock blading design approach was used to minimize the shock strength in the blade during design iterations. CFD calculations were made to assess performance. The HPT aerodynamics and cooling design was replicated and tested in a high speed rig at design point and off-design conditions. The turbine met or exceeded the expected performance level based on both steady state and radial/circumferential traverse data. High frequency dynamic total pressure measurements were made to understand the presence of unsteadiness that persists in the exhaust of a transonic turbine.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Discrete tip injection upstream of the rotor tip is an effective technique to extend stability margin for a compressor system in an aeroengine. The current study investigates the effects of injectors’ circumferential coverage on compressor performance and stability using time-accurate three-dimensional numerical simulations for multi passages in a transonic compressor. The percentage of circumferential coverage for all the six injectors ranges from 6% to 87% for the five investigated configurations. Results indicate that circumferential coverage of tip injection can greatly affect compressor stability and total pressure ratio, but has little influence on adiabatic efficiency. The improvement of compressor total pressure ratio is linearly related with the increasing circumferential coverage. The unsteady flow fields show that there exists a non-ignorable time lag of the injection effects between the passage inlet and outlet, and blade tip loading will not decline until the injected flow reaches the passage outlet. Stability improves sharply with the increasing circumferential coverage when the coverage is less than 27%, but increases flatly for the rest. It is proven that the injection efficiency which is a measurement of averaged blockage decrement in the injected region is an effective guideline to predict the stability improvement.


Author(s):  
Benjamin Walther ◽  
Siva Nadarajah

This paper develops a discrete adjoint formulation for the constrained aerodynamic shape optimization in a multistage turbomachinery environment. The adjoint approach for viscous, internal flow problems and the corresponding adjoint boundary conditions are discussed. To allow for a concurrent rotor/stator optimization a non-reflective adjoint mixing-plane formulation is proposed. A sequential-quadratic programming algorithm is utilized to determine an improved airfoil shape based on the objective function gradient provided by the adjoint solution. The functionality of the proposed optimization method is demonstrated by the redesign of a midspan section of a single-stage transonic compressor. The objective is to maximize the isentropic efficiency while constraining the mass flow rate and the total pressure ratio.


Author(s):  
Wei Yu-bing ◽  
Dong Bao-chang ◽  
Zhang Guei-xiang

A preliminary analysis of a single-stage transonic fan with a hub-to-tip ratio of 0.385 is presented in this paper. The flow field design computer program and the parameter selection of the fan parameters are reviewed. The modifications which should be made to improve the performance of the fan are pointed out. The experimental results demonstrate that the overall performance design goals of the fan have been achieved at design speed and flow rate. But fan discharge total pressure and total temperature gradients still exist efficiency is poor at the hub and tip regions. Therefore the single stage fan is not suitable for use as an inlet stage. The main reason for the problems mentioned above are the inaccurate calculation of flow field and inadequate selection of design parameters.


Author(s):  
Pritam Batabyal ◽  
Dilipkumar B. Alone ◽  
S. K. Maharana

This paper presents a numerical case study of various stepped tip clearances and their effect on the performance of a single stage transonic axial flow compressor, using commercially available software ANSYS FLUENT 14.0. A steady state, implicit, three dimensional, pressure based flow solver with SST k-Ω turbulence model has been selected for the numerical study. The stepped tip clearances have been compared with the baseline model of zero tip clearance at 70% and 100 % design speed. It has been observed that the compressor peak stage efficiency and maximum stage pressure ratio decreases as the tip clearances in the rear part are increased. The stall margin also increases with increase in tip clearance compared to the baseline model. An ‘optimum’ value of stepped tip clearance has been obtained giving peak stage compressor performance. The CFD results have been validated with the earlier published experimental data on the same compressor at 70% design speed.


Sign in / Sign up

Export Citation Format

Share Document