scholarly journals Stalled Flow Performance for Axial Compressors: II — Rotating Stall Characteristic

Author(s):  
S. G. Koff

This paper describes a study of stalled flow performance of multistage compressors. The study is focused on the performance in rotating stall, in particular, the impact on stall inception and stall recovery. It is argued that the recovery point measured in post-stall compressor tests results from a compression system instability, rather than from an unstable rotating stall flow. If so, recoverability from rotating stall may be improved by altering system parameters. Furthermore, the full-span rotating stall characteristic is extrapolated beyond the measured recovery point. On this basis, the compressor stall point is viewed as a bifurcation, where a change in flow mode exists, perhaps analogous to the critical point in the axial compression of thin shells. An application for the extended rotating stall characteristic is in a model of transient compression system behavior.

2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Z. S. Spakovszky ◽  
C. H. Roduner

In turbocharger applications, bleed air near the impeller exit is often used for secondary flow systems to seal bearing compartments and to balance the thrust load on the bearings. There is experimental evidence that the performance and operability of highly-loaded centrifugal compressor designs can be sensitive to the amount of bleed air. To investigate the underlying mechanisms and to assess the impact of bleed air on the compressor dynamic behavior, a research program was carried out on a preproduction, 5.0 pressure ratio, high-speed centrifugal compressor stage of advanced design. The investigations showed that bleed air can significantly reduce the stable flow range. Compressor rig experiments, using an array of unsteady pressure sensors and a bleed valve to simulate a typical turbocharger environment, suggest that the path into compression system instability is altered by the bleed flow. Without the bleed flow, the prestall behavior is dominated by short-wavelength disturbances, or so called “spikes,” in the vaneless space between the impeller and the vaned diffuser. Introducing bleed flow at the impeller exit reduces endwall blockage in the vaneless space and destabilizes the highly-loaded vaned diffuser. The impact is a 50% reduction in stable operating range. The altered diffuser characteristic reduces the compression system damping responsible for long-wavelength modal prestall behavior. A four-lobed backward traveling rotating stall wave is experimentally measured in agreement with calculations obtained from a previously developed dynamic compressor model. In addition, a self-contained endwall blockage control strategy was employed, successfully recovering 75% of the loss in surge-margin due to the bleed flow and yielding a one point increase in adiabatic compressor efficiency.


Author(s):  
Huan Zhang ◽  
Jun Hu ◽  
Baofeng Tu ◽  
Zhiqiang Wang

In the present paper, a nonlinear multi “actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities, including rotating stall and surge, in high speed multistage axial compressors. The model describes the duct flow fields using two dimensional, compressible and unsteady Euler equations, and accounts for the influences of downstream plenum and throttle in the system as well. It replaces each blade row of multistage compressors with a disk. For numerical calculations, the time marching procedure, using MacCormack two steps scheme, is used. The main purpose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception, the interaction between blade rows in high speed multistage compressors and the influence of rotating inlet distortion on the stability. It has been demonstrated that the model has the ability to predict those phenomena, and the results show that some system parameters have a strong effect on the stall features as well. Results for a five stage high speed compressor are analyzed in detail, and comparison with the experimental data demonstrates that the model and calculating results are reliable.


Author(s):  
Z. S. Spakovszky ◽  
C. H. Roduner

In turbocharger applications bleed air near the impeller exit is often used for secondary flow systems to seal bearing compartments and to balance the thrust load on the bearings. There is experimental evidence that the performance and operability of highly loaded centrifugal compressor designs can be sensitive to the amount of bleed air. To investigate the underlying mechanisms and to assess the impact of bleed air on the compressor dynamic behavior, a research program was carried out on a pre-production, 5.0 pressure ratio, high-speed centrifugal compressor stage of advanced design. The investigations showed that bleed air can significantly reduce the stable flow range. Compressor rig experiments, using an array of unsteady pressure sensors and a bleed valve to simulate a typical turbocharger environment, suggest that the path into compression system instability is altered by the bleed flow. Without bleed flow, the pre-stall behavior is dominated by short wavelength disturbances, or so called ‘spikes’, in the vaneless space between the impeller and the vaned diffuser. Introducing bleed flow at impeller exit reduces endwall blockage in the vaneless space and destabilizes the highly-loaded vaned diffuser. The impact is a 50% reduction in stable operating range. The altered diffuser characteristic reduces the compression system damping responsible for long wavelength, modal pre-stall behavior. A four-lobed backward traveling rotating stall wave is experimentally measured, in agreement with calculations obtained from a previously developed dynamic compressor model. In addition, a self-contained, endwall blockage control strategy was employed, successfully recovering 75% of the loss in surge-margin due to bleed flow and yielding a 1 point increase in adiabiatic compressor efficiency.


2021 ◽  
Author(s):  
E. J. Gunn ◽  
T. Brandvik ◽  
M. J. Wilson ◽  
R. Maxwell

Abstract This paper considers the impact of a damaged leading edge on the stall margin and stall inception mechanisms of a transonic, low pressure ratio fan. The damage takes the form of a squared-off leading edge over the upper half of the blade. Full-annulus, unsteady CFD simulations are used to explain the stall inception mechanisms for the fan at low- and high-speed operating points. A combination of steady and unsteady simulations show that the fan is predicted to be sensitive to leading edge damage at low speed, but insensitive at high speed. This blind prediction aligns well with rig test data. The difference in response is shown to be caused by the change between subsonic and supersonic flow regimes at the leading edge. Where the inlet relative flow is subsonic, rotating stall is initiated by growth and propagation of a subsonic leading edge flow separation. This separation is shown to be triggered at higher mass flow rates when the leading edge is damaged, reducing the stable flow range. Where the inlet relative flow is supersonic, the flow undergoes a supersonic expansion around the leading edge, creating a supersonic flow patch terminated by a shock on the suction surface. Rotating stall is triggered by growth of this separation, which is insensitive to leading edge shape. This creates a marked difference in sensitivity to damage at low- and high-speed operating points.


Author(s):  
Gabriel Margalida ◽  
Pierric Joseph ◽  
Olivier Roussette ◽  
Antoine Dazin

The present paper aims at evaluating the surveillance parameters used for early stall warning in axial compressors, and is based on unsteady pressure measurements at the casing of a single stage axial compressor. Two parameters—Correlation and Root Mean Square (RMS)—are first compared and their relative performances discussed. The influence of sensor locations (in both radial and axial directions) is then considered, and the role of the compressor’s geometrical irregularities in the behavior of the indicators is clearly highlighted. The influence of the throttling process is also carefully analyzed. This aspect of the experiment’s process appears to have a non-negligible impact on the stall warning parameters, despite being poorly documented in the literature. This last part of this research work allow us to get a different vision of the alert parameters compared to what is classically done in the literature, as the level of irregularity that is reflected by the magnitude of the parameters appears to be an image of a given flow rate value, and not a clear indicator of the stall inception.


1982 ◽  
Vol 104 (3) ◽  
pp. 715-721 ◽  
Author(s):  
P. Ferrand ◽  
J. Chauvin

This paper describes a method of evaluation of the single and multistage compressors response to steady and unsteady inlet distortions. It allows also the evaluation of the appearance of unstable regimes and their characterization (rotating stall and surge). It is based on a linearized approach using mean line calculations. The compressor is considered as a series of vaned and vaneless spaces, and the corresponding equations are solved by use of Fourier series for time independent variables and by Laplace’s transform for time-dependent variables. An analogy between the compressor’s response and a servo-mechanism is developed, using Nyquist’s diagram. Results are compared with experimental data which prove the validity of the approach. A parametric study indicates which parameters can be modified to improve the flow stability.


Author(s):  
N. Gourdain ◽  
S. Burguburu ◽  
G. J. Michon ◽  
N. Ouayahya ◽  
F. Leboeuf ◽  
...  

This paper deals with the first instability which occurs in compressors, close to the maximum of pressure rise, called rotating stall. A numerical simulation of these flow phenomena is performed and a comparison with experimental data is made. The configuration used for the simulation is an axial single-stage and low speed compressor (compressor CME2, LEMFI). The whole stage is modeled with a full 3D approach and tip clearance is taken into account. The numerical simulation shows that at least two different mechanisms are involved in the stall inception. The first one leads to a rotating stall with 10 cells and the second one leads to a configuration with only 3 cells. Unsteady signals from the computation are analyzed thanks to a time-frequency spectral analysis. An original model is proposed, in order to predict the spatial and the temporal modes which are the results of the interaction between stall cells and the compressor stage. A comparison with measurements shows that the computed stall inception point corresponds to the experimental limit of stability. The performance of the compressor during rotating stall is also well predicted by the simulation.


Author(s):  
Joshua D. Cameron ◽  
Scott C. Morris ◽  
Sean T. Barrows ◽  
Jen-Ping Chen

Experimental studies of stall inception in axial compressors typically involve the measurement of basic flow variables (often pressure or velocity) with low spatial resolution. These measurements are used to make inferences about the fluid dynamics of stall. This experimental paradigm has been used by many investigators to great effect over the last several decades. However, several limitations remain which restrict the utility of these types of measurements for developing further insight into stall inception physics. Primary among these limitations is the impracticality of making measurements within the rotating blade passages. This is especially troublesome in light of recent computational studies which indicate that the generation of short length-scale rotating disturbances is related to the rotor tip clearance flow. This study utilized the results of a recent full annulus rotating stall simulation to investigate the relationships between the casing pressure field and less observable flow quantities which are believed to be causally related to the generation of rotating disturbances. The CFD results are assumed to represent the true flow physics within the compressor. To the extent that this approximation is true, these results can be used to interpret the meaning of experimental measurements of basic flow variables. These observations not only provide new insight into the interpretation of the large catalog of experimental stall measurements found in the literature, they also give directives for future measurements and numerical simulations.


Author(s):  
P. Ferrand ◽  
J. Chauvin

This paper describes a method of evaluation of the single and multistage compressors response to steady and unsteady inlet distortions. It allows also the evaluation of the appearance of unstable regimes and their characterization (rotating stall and surge). It is based on a linearized approach using mean line calculations. The compressor is considered as a serie of vaned and vaneless spaces, and the corresponding equations are solved by use of Fourier series for time independent variables and by Laplace’s transform for time dependent variables. An analogy between the compressor’s response and a servo-mechanism is developed, using Nyquist’s diagram. Results are compared with experimental data which prove the validity of the approach. A parametric study indicates which parameters can be modified to improve the flow stability.


Author(s):  
F. E. McCaughan

Recent experimental work has shown that in some compressors, the nonaxisymmetric disturbance leading to loss of stability appears as a localised phenomena, rather than a travelling sine wave which spans the entire circumference, suggesting that nonlinear effects appear very early in the evolution of the disturbance. In a regime dominated by nonlinear effects, the Fourier modes used to describe the spatial structure of non-axisymmetric disturbances, obtained from either experimental data or numerical data produced by a model, can interact very early in the rotating stall inception process. In this paper, we determine which parameters affect the rate of interaction of the various modes in a study of the Moore-Greitzer (MG) model. The relevant parameters are related back to the physics of compressors. Though the stall inception process may well be three-dimensional and involve physics not captured by the quasi two dimensional MG model, this study is of interest to those who wish to detect and control the magnitude of nonaxisymmetric disturbances, in order to decrease the stall margin in a compression system. Any control strategy which depends on eight detecting devices around the annulus of the compressor can resolve only the first three spatial Fourier modes. If disturbances leading to compression system instability develop as spikes, this approach will be completely unsuccessful at detecting the disturbances while they are still small enough to be controlled. The problem is further exacerbated by temporal nonlinearities, that is, the operating point may be linearly stable, but may lose stability to larger disturbances. It is observed in experiments and the Moore-Greitzer model that the compressor loses stability before the throttle is closed past the peak of the performance curve. Both spatial and temporal nonlinearities are discussed.


Sign in / Sign up

Export Citation Format

Share Document