Application of the Rotating Water Table to Nozzle Wake Excitation in Low Pressure Turbines

Author(s):  
Shun Chen

The hydraulic analogy was employed in a rotating water table for simulating the compressible two dimensional flow in a low pressure turbine stage. Both steady and unsteady forces were measured directly on a rotating blade in a blade row rotating concentrically with a row of stator vanes. With proper modeling of the simulation, it is shown that the rotating water table can yield results that agree favorably with the analytical predictions and turbine test results. Using this test facility, the effects of axial spacing between rotor and stator rows on the nozzle wake excitation have been investigated for two different stator vane profiles. The water table test results correlate qualitatively with the turbine test data. The cancellation of nozzle passing frequency excitation by off-setting nozzle pitch was demonstrated in the water table and the results compared with both the analytical predictions and the laboratory turbine test results.

Author(s):  
Martin Marx ◽  
Martin Lipfert ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Detlef Korte

A two-stage low pressure turbine is tested within the co-operation project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH. With experimental data taken in the altitude test facility this study aims to analyze the origin and effect of unsteady pressure fluctuations causing unsteady work in the second stator vane. Measurements at aerodynamic design conditions cover steady and unsteady surface pressure data on the mid span streamline position. Unsteady pressure fluctuations are identified close to the throat plane area, which are influenced by both upstream and downstream events such as wake and potential field interaction. Upstream moving static pressure waves can be identified. To support the experimental results, URANS CFD predictions of the whole turbine configuration were performed. The numerical approach is suitable to reproduce the observed phenomena and allows a deeper investigation. The observed pressure pulsations influence the local unsteady work done to and by the fluid. An evaluation of particle paths in the second stator vane indicates an isentropic energy transfer from free stream to wake fluid. Due to this unsteady energy exchange the momentum deficit of the wake gets reduced, resulting in a potential benefit on the mixing loss.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Franz F. Blaim ◽  
Roland E. Brachmanski ◽  
Reinhard Niehuis

The objective of this paper is to analyze the influence of incoming periodic wakes, considering the variable width, on the integral total pressure loss for two low pressure turbine (LPT) airfoils. In order to reduce the overall weight of a LPT, the pitch to chord ratio was continuously increased, during the past decades. However, this increase encourages the development of the transition phenomena or even flow separation on the suction side of the blade. At low Reynolds numbers, large separation bubbles can occur there, which are linked with high total pressure losses. The incoming wakes of the upstream blades are known to trigger early transition, leading to a reduced risk of flow separation and hence minor integral total pressure losses caused by separation. For the further investigation of these effects, different widths of the incoming wakes will be examined in detail, here. This variation is carried out by using the numerical Unsteady Reynolds Averaged Solver TRACE developed by the DLR Cologne in collaboration with MTU Aero Engines AG. For the variation of the width of the wakes, a variable boundary condition was modeled, which includes the wake vorticity parameters. The width of the incoming wakes was used as the relevant variable parameter. The implemented boundary condition models the unsteady behavior of the incoming wakes by the variation of the velocity profile, using a prescribed frequenc. TRACE can use two different transition models; the main focus here is set to the γ–Reθt transition model, which uses local variables in a transport equation, to trigger the transition within the turbulence transport equation system. The experimental results were conducted at the high speed cascade open loop test facility at the Institute for Jet Propulsion at the University of the German Federal Armed Forces in Munich. For the investigation presented here, two LPT profiles — which were designed with a similar inlet angle, turning, and pitch are analyzed. However, with a common exit Mach number and a similar Reynolds number range between 40k and 400k, one profile is front loaded and the other one is aft loaded. Numerical unsteady results are in good agreement with the conducted measurements. The influence of the width of the wake on the time resolved transition behavior, represented by friction coefficient plots and momentum loss thickness will be analyzed in this paper.


Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
S. Pramstrahler ◽  
F. Heitmeir ◽  
...  

Abstract The design of modern aero engines enhances the interaction between components and facilitates the propagation of circumferential distortions of total pressure and temperature. As a consequence, the inlet conditions of a real turbine have significant spatial non-uniformities, which have direct consequences on both its aerodynamic and vibration characteristics. This work presents the results of an experimental study on the effects of different inlet total pressure distortion-stator clocking positions on the propagation of total pressure inflow disturbances through a low pressure turbine stage, with a particular focus on both the aerodynamic and aeroelastic performance. Measurements at a stable engine relevant operating condition and during transient operation were carried out in a one and a half stage subsonic turbine test facility at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. A localised total pressure distortion was generated upstream of the stage in three different azimuthal positions relative to the stator vanes. The locations were chosen in order to align the distortion directly with a vane leading edge, suction side and pressure side. Additionally, a setup with clean inflow was used as reference. Steady and unsteady aerodynamic measurements were taken downstream of the investigated stage by means of a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively. Strain gauges applied on different blades were used in combination with a telemetry system to acquire the rotor vibration data. The aerodynamic interactions between the stator and rotor rows and the circumferential perturbation were studied through the identification of the main structures constituting the flow field. This showed that the steady and unsteady alterations created by the distortion in the flow field lead to modifications of the rotor vibration characteristics. Moreover, the importance of the impact that the pressure distortion azimuthal position has on the LPT stage aerodynamics and vibrations was highlighted.


Author(s):  
Charles W. Haldeman ◽  
Michael G. Dunn ◽  
John W. Barter ◽  
Brian R. Green ◽  
Robert F. Bergholz

Aerodynamic measurements were acquired on a modern single-stage, transonic, high-pressure turbine with the adjacent low-pressure turbine vane row (a typical civilian one and one-half stage turbine rig) to observe the effects of low-pressure turbine vane clocking on overall turbine performance. The turbine rig (loosely referred to in this paper as the stage) was operated at design corrected conditions using the Ohio State University Gas Turbine Laboratory Turbine Test Facility (TTF). The research program utilized uncooled hardware in which all three airfoils were heavily instrumented at multiple spans to develop a full clocking dataset. The low-pressure turbine vane row (LPTV) was clocked relative to the high-pressure turbine vane row (HPTV). Various methods were used to evaluate the influence of clocking on the aeroperformance (efficiency) and the aerodynamics (pressure loading) of the LPTV, including time-resolved and time-averaged measurements. A change in overall efficiency of approximately 2–3% due to clocking effects is demonstrated and could be observed using a variety of independent methods. Maximum efficiency is obtained when the time-average surface pressures are highest on the LPTV and the time-resolved surface pressure (both in the time domain and frequency domain) show the least amount of variation. The overall effect is obtained by integrating over the entire airfoil, as the three-dimensional effects on the LPTV surface are significant. This experimental data set validates several computational research efforts that suggested wake migration is the primary reason for the perceived effectiveness of vane clocking. The suggestion that wake migration is the dominate mechanism in generating the clocking effect is also consistent with anecdotal evidence that fully cooled engine rigs do not see a great deal of clocking effect. This is consistent since the additional disturbances induced by the cooling flows and/or the combustor make it extremely difficult to find an alignment for the LPTV given the strong 3D nature of modern high-pressure turbine flows.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines, a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the Altitude Test Facility (ATF) aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multistage computational fluid dynamics (CFD) predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positive incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side (SS) phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions, vane 1 passage vortex fluid is involved in the midspan passage interaction, leading to a more distorted three-dimensional (3D) flow field.


Author(s):  
D. C. Knezevici ◽  
S. A. Sjolander ◽  
T. J. Praisner ◽  
E. Allen-Bradley ◽  
E. A. Grover

This paper is the second in a series from the same authors studying the mitigation of endwall losses using the low-speed linear cascade test facility at Carleton University. The previous paper documented the baseline test case for the study. The current work investigates the secondary flow in a cascade of more highly-loaded low-pressure turbine airfoils with and without the implementation of endwall profiling. This study is novel in two regards. First, the contouring is applied to low-pressure turbine airfoils, whereas studies conducted by other researchers have focused their endwall profiling efforts on the high-pressure turbine. Second, while previous researchers have optimized contouring designs for a given airfoil, the current work demonstrates the potential to open the design space by employing high-lift airfoils in conjunction with endwall contouring. Seven-hole pneumatic probe measurements taken within the blade passage and downstream of the trailing edge track the progression of the secondary flow and losses generated. The contouring divides the vorticity associated with the passage vortex into two weaker vortices, and reduces the secondary kinetic energy. Overall the secondary losses are reduced and the loss reduction is discussed with regards to changes in the flow physics. A detailed breakdown of the mixing losses further demonstrates the benefits of endwall contouring.


Author(s):  
Johan Hja¨rne ◽  
Valery Chernoray ◽  
Jonas Larsson ◽  
Lennart Lo¨fdahl

In this paper 3D numerical simulations of turbulent incompressible flows are validated against experimental data from the linear low pressure turbine/outlet guide vane (LPT/OGV) cascade at Chalmers in Sweden. The validation focuses on the secondary flow-fields and loss developments downstream of a highly loaded OGV. The numerical simulations are performed for the same inlet conditions as in the test-facility with engine-like properties in terms of Reynolds number, boundary-layer thickness and inlet flow angles with the goal to validate how accurately and reliably the secondary flow fields and losses for both on- and off-design conditions can be predicted for OGV’s. Results from three different turbulence models as implemented in FLUENT, k-ε Realizable, kω-SST and the RSM are validated against detailed measurements. From these results it can be concluded that the RSM model predicts both the secondary flow field and the losses most accurately.


Sign in / Sign up

Export Citation Format

Share Document