Numerical Study of a Dump Diffuser Flow Field in a Short Annular Combustor

Author(s):  
Hu Zhiben ◽  
Hua Guangshi

A computer program for solving the two-dimensional steady flow field of the dump diffuser is made based on the streamtube method and SIMPLE (Semi–Implicit Method for Pressure linked Equations) algorithm. Some concrete measures or improvements are developed to treat the irregularly shaped calculation domain, the inlet distribution of k and ε to use the variable relaxation factors. The flow field in a short dump diffuser model with pre–diffuser and blind flame tube is calculated with the program. The calculated results agree well with the experimental data.

Author(s):  
Zhibo Zhang ◽  
Hongtao Zheng ◽  
Honglei Yang ◽  
Ren Yang ◽  
Qian Liu ◽  
...  

Lean blowout (LBO) plays an important role in combustor performance. A new method named Feature-Section-criterion (FSC) for predicting the LBO of annular combustor has been put forward and expounded in this paper. A CFD software FLUENT has been used to simulate the combustion flow field of an annular combustor. The process of blowout and effects of flow split among swirlers and primary holes have been researched by using of FSC. The result shows that the predictions of FSC are in agreement with corresponding experimental data. So this method for predicting lean blowout is reliable and can be used for engineering applications.


2015 ◽  
Vol 119 (1215) ◽  
pp. 631-645 ◽  
Author(s):  
F. Ding ◽  
C.-B. Shen ◽  
W. Huang ◽  
J. Liu

AbstractA numerical study was conducted to analyse the performance of different turbulence models and different turbulence intensities and turbulence length scales specified for the boundary condition of the inflow to the internal compression flow field of a typical supersonic inlet. The effect of the back-pressure ratio on the properties of the flow field was also investigated. Computational results obtained by the commercial software FLUENT, which is used to solve the full two-dimensional Reynolds-averaged Navier-Stokes equations, were validated through both graphical and quantitative comparisons with previously published experimental data. The two-equation models that were considered in this study are the RNGk-ε, realisablek-ε, standardk-ε, and SSTk-ω turbulence models. The RNGk-ε model had the best performance among the four models and predicted good wall pressure distributions. The best agreement between the predicted results and experimental data was obtained when either the default values of the freestream turbulence intensity and length scale in the FLUENT solver were used, or the empirical formula was used to calculate the two parameters of the freestream turbulence properties. The shock wave pattern varied between the oblique mode and the fully developed normal mode with increasing back-pressure ratio, and the unstart phenomenon occurred when the back-pressure ratio was sufficiently high.


2011 ◽  
Vol 97-98 ◽  
pp. 1085-1090 ◽  
Author(s):  
Rui Deng ◽  
De Bo Huang ◽  
Guang Li Zhou ◽  
Hua Wei Sun

In the present work, the CFD software FLUENT is used to calculate the ship resistance and simulate the flow field around it. Comparison of the numerical results with experimental data of the ship without interceptor shows basically satisfactory agreement in the case of high-speed. In order to get the right parameters of the interceptor for the ship, some two dimensional calculation is taken to study the influence of interceptor with different size. The simulation of the three dimensional vessel with interceptor is also included, and the effect is discussed.


2012 ◽  
Vol 212-213 ◽  
pp. 1172-1176
Author(s):  
Jin Feng

In order to study the characteristics of flow field in the process of wave impact, two-dimensional regular wave numerical models were established based on the software FLUENT. RANS equations were adopted. The standard equations were used to close the Reynolds equations. VOF method was used to reconstruct the free surface. After three typical cases of wave slamming on open-piled structures were reproduced, the models were verified by experimental data and the flow field surrounding the structure was displayed visually. Then the processes of wave impact under various wave height, period and over height were simulated. The influences of the three parameters on the distribution of vertical velocities were analyzed, which shows that the distribution rule of the vertical velocities is similar to the wave impact pressures.


1996 ◽  
Vol 118 (1) ◽  
pp. 81-84 ◽  
Author(s):  
T. G. Travers ◽  
W. M. Worek

The laminar flow field in a planar, ninety degree bifurcation is examined. This numerical study uses the computational-fluid-dynamics software Fluent Version 4.11. First, the velocity field in a bifurcation without a protruding branching duct is modeled, and the results are successfully compared to experimental data. Next, the flow field is studied in bifurcations that have branching ducts that protrude into the main duct. The velocity field and pressure drop are documented, and are found to be strongly influenced by the extent of the branching duct protrusion.


1967 ◽  
Vol 11 (02) ◽  
pp. 93-108
Author(s):  
Z. L. Harrison ◽  
Duen-pao Wang

A general method is established to calculate the pressure distribution and the moment of force for a two-dimensional, supercavitating hydrofoil with a flap. The wake flow model is adopted to describe the configuration of the flow field. Some numerical results for a supercavitating flat plate with a flap are compared with the corresponding experimental data.


Sign in / Sign up

Export Citation Format

Share Document