An Experimental Investigation of a Vortex Flow Cascade

1988 ◽  
Author(s):  
Tang Yan-Ping ◽  
Chen Mao-Zhang

A new type of compressor cascade, called the vortex flow cascade (shortly VFC), has been developed in the paper. The VFC is made up of the normal compressor cascade (shortly NCC) with NACA-65-0010 profile and vortex generator. Experiments are conducted for researching the effects of a large scale streamwise control vortex on the flow structure inside cascade passage. The results are encouraging. Based on the present investigation the vortical flow pattern and loss mechanism of VFC have been discussed.

2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Jeongmoon Park ◽  
Axy Pagan-Vazquez ◽  
Jorge L. Alvarado ◽  
Leonardo P. Chamorro ◽  
Scott Lux ◽  
...  

Visualization of the flow structure generated by passive vortex generators continues to be a matter of research in the fluid mechanics and heat transfer communities. In this study, self-sustaining counter-rotating vortex pairs (CVP) generated from a series of vortex generators (VG) have been characterized numerically and experimentally to understand the effects of the VG parameters on vortical flow structure formation. Four different types of VGs were considered by varying the taper angle from 0° to 19.3° at a fixed inclination angle of 24.5° and a Reynolds number of 1965. Flow fields were experimentally visualized using a smoke technique. Each VG induced a coherent CVP flow structure in the wake region despite the fact that the upstream flow was laminar. CVPs initially dominate flow dynamics over a certain streamwise length; however, Kelvin-Helmholtz (KH) instability appears to affect the spatial evolution of CVP longitudinally. The CVP within the stability region were reconstructed digitally in 3D by interpolating several 2D smoke images taken at various spanwise planes. The smoke results indicate that as taper angle decreases, the onset location of KH instability decreases. Furthermore, the CVP trajectory within the stability region was observed to be predominantly controlled by a two-dimensional inviscid process, while the effects by the free stream were not significant. Based on the experimental observations and the numerically reconstructed 3D CVP flow structures, VG with smaller taper angle results in CVPs with higher circulation, which is a positive aspect for mass and heat transfer applications. Preliminary numerical simulations based on RANS have shown that heat transfer enhancement is about 50% in the region near the rectangular vortex generator.


Author(s):  
Niklas Neupert ◽  
Birger Ober ◽  
Franz Joos

In recent years overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Most of the studies concerning this topic focus on the problem from a thermodynamic point of view as summarized by Eisfeld and Joos [1]. Only a few studies, however, were undertaken to investigate the droplet behavior in the flow channel of a compressor. Eisfeld and Joos [2] and Ober [3] revealed qualitative results showing a large variety of two-phase phenomena present. In this paper results of experimental investigation of a water laden flow through a compressor cascade are presented. A finely dispersed spray was used in the measurements (D10 < 10μm). Results of the droplet behavior in a transonic compressor cascade are shown in terms of shadowgraphy images and images of the blade surface film pattern. The angle of attack, the incoming velocity and the water load were varied to estimate the influence of these parameters on the flow pattern. The qualitative observations of the flow pattern are related to LDA/PDA data of the flow channel and at the outlet of the cascade. The data represents a base for numerical and mean line models of two phase compressor flow concerning droplet-wall interactions as well as flow induced breakup.


2006 ◽  
Vol 129 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Wei Zhang ◽  
Bu Geun Paik ◽  
Young Gil Jang ◽  
Sang Joon Lee ◽  
Su Eon Lee ◽  
...  

The three-dimensional flow structure inside an exhaust hood model of a low-pressure steam turbine was investigated using a particle image velocimetry (PIV) velocity field measurement technique. The PIV measurements were carried out in several selected planes under design operation conditions with simulated total pressure distribution and axial velocity profile. The mean flow fields revealed a complicated vortical flow structure and the major sources of energy loss. Vortices with different scales were observed inside the exhaust hood: a strong separation vortex (SV) behind the tip of the guide vane, a longitudinal vortex (LV) at the exhaust hood top, a large-scale passage vortex (PV) evolving throughout the flow path, and an end-wall vortex (EWV) in the region adjacent to the front end-wall. Both the SV and the large-scale PV seemed to consume large amounts of kinetic energy and reduce the pressure recovery ability. The results indicate that the steam guide vane and the bearing cone should be carefully designed so as to control the vortical flow structure inside the exhaust hood.


2006 ◽  
Vol 326-328 ◽  
pp. 167-170 ◽  
Author(s):  
Cheol Woo Park ◽  
In Je Baek ◽  
Jong Hwan Yoon

In the present study, the flow structure inside the refrigerating compartment of a scaleddown display cooler model was investigated experimentally using the particle image velocimetry (PIV) method, which is a reliable velocity field measurement technique. In addition, we also carried out flow visualization and computer simulations regarding the movements of thermo-fluid inside a display cooler. As a result, the velocity field measurement shows a large scale vortical flow structure inside the refrigerating compartment due to the entrained flow, thus penetrating a base plate through the open inlet gap.


2018 ◽  
Author(s):  
Zeyu Wang ◽  
Yanhua Diao ◽  
Yaohua Zhao ◽  
Chuanqi Chen ◽  
Lin Liang ◽  
...  

Author(s):  
Bo Wang ◽  
Yanhui Wu ◽  
Kai Liu

Driven by the need to control flow separations in highly loaded compressors, a numerical investigation is carried out to study the control effect of wavy blades in a linear compressor cascade. Two types of wavy blades are studied with wavy blade-A having a sinusoidal leading edge, while wavy blade-B having pitchwise sinusoidal variation in the stacking line. The influence of wavy blades on the cascade performance is evaluated at incidences from −1° to +9°. For the wavy blade-A with suitable waviness parameters, the cascade diffusion capacity is enhanced accompanied by the loss reduction under high incidence conditions where 2D separation is the dominant flow structure on the suction surface of the unmodified blade. For well-designed wavy blade-B, the improvement of cascade performance is achieved under low incidence conditions where 3D corner separation is the dominant flow structure on the suction surface of the baseline blade. The influence of waviness parameters on the control effect is also discussed by comparing the performance of cascades with different wavy blade configurations. Detailed analysis of the predicted flow field shows that both the wavy blade-A and wavy blade-B have capacity to control flow separation in the cascade but their control mechanism are different. For wavy blade-A, the wavy leading edge results in the formation of counter-rotating streamwise vortices downstream of trough. These streamwise vortices can not only enhance momentum exchange between the outer flow and blade boundary layer, but also act as the suction surface fence to hamper the upwash of low momentum fluid driven by cross flow. For wavy blade-B, the wavy surface on the blade leads to a reduction of the cross flow upwash by influencing the spanwise distribution of the suction surface static pressure and guiding the upwash flow.


2021 ◽  
Author(s):  
Weixin Zhang ◽  
Lin Wu ◽  
Dujin Qiao ◽  
Jie Tian ◽  
Yan Li ◽  
...  

Safety issues limit the large-scale application of lithium-ion batteries. In this work, a new type of N-H-microcapsule fire extinguishing agent is prepared by using melamine-urea-formaldehyde resin as shell material, perfluoro(2-methyl-3-pentanone)...


2011 ◽  
Vol 672 ◽  
pp. 451-476 ◽  
Author(s):  
ERICH SCHÜLEIN ◽  
VICTOR M. TROFIMOV

Large-scale longitudinal vortices in high-speed turbulent separated flows caused by relatively small irregularities at the model leading edges or at the model surfaces are investigated in this paper. Oil-flow visualization and infrared thermography techniques were applied in the wind tunnel tests at Mach numbers 3 and 5 to investigate the nominally 2-D ramp flow at deflection angles of 20°, 25° and 30°. The surface contour anomalies have been artificially simulated by very thin strips (vortex generators) of different shapes and thicknesses attached to the model surface. It is shown that the introduced streamwise vortical disturbances survive over very large downstream distances of the order of 104 vortex-generator heights in turbulent supersonic flows without pressure gradients. It is demonstrated that each vortex pair induced in the reattachment region of the ramp is definitely a child of a vortex pair, which was generated originally, for instance, by the small roughness element near the leading edge. The dependence of the spacing and intensity of the observed longitudinal vortices on the introduced disturbances (thickness and spanwise size of vortex generators) and on the flow parameters (Reynolds numbers, boundary-layer thickness, compression corner angles, etc.) has been shown experimentally.


Author(s):  
Wei Ma ◽  
Feng Gao ◽  
Xavier Ottavy ◽  
Lipeng Lu ◽  
A. J. Wang

Recently bimodal phenomenon in corner separation has been found by Ma et al. (Experiments in Fluids, 2013, doi:10.1007/s00348-013-1546-y). Through detailed and accurate experimental results of the velocity flow field in a linear compressor cascade, they discovered two aperiodic modes exist in the corner separation of the compressor cascade. This phenomenon reflects the flow in corner separation is high intermittent, and large-scale coherent structures corresponding to two modes exist in the flow field of corner separation. However the generation mechanism of the bimodal phenomenon in corner separation is still unclear and thus needs to be studied further. In order to obtain instantaneous flow field with different unsteadiness and thus to analyse the mechanisms of bimodal phenomenon in corner separation, in this paper detached-eddy simulation (DES) is used to simulate the flow field in the linear compressor cascade where bimodal phenomenon has been found in previous experiment. DES in this paper successfully captures the bimodal phenomenon in the linear compressor cascade found in experiment, including the locations of bimodal points and the development of bimodal points along a line that normal to the blade suction side. We infer that the bimodal phenomenon in the corner separation is induced by the strong interaction between the following two facts. The first is the unsteady upstream flow nearby the leading edge whose angle and magnitude fluctuate simultaneously and significantly. The second is the high unsteady separation in the corner region.


Sign in / Sign up

Export Citation Format

Share Document