scholarly journals Weak Extinction Limits of Large Scale Flameholders

Author(s):  
M. R. Baxter ◽  
A. H. Lefebvre

Weak extinction data obtained from an experimental apparatus designed to simulate the characteristics of practical afterburner combustion systems are presented. The apparatus supplies mixtures of varied composition (equivalence ratio and degree of vitiation), temperature and velocity to Vee-gutter flame holders of various widths and shapes similar to those found in jet engine systems. The fuel employed is a liquid hydrocarbon whose chemical composition and physical properties correspond to those of aviation kerosine, JP5. An equation for predicting weak extinction limits which accounts for upstream vitiation and the chemical characteristics of the fuel is derived from stirred reactor theory. The correlation between the predictions and experimental results indicates that the stirred reactor approach can provide a framework for predicting the lean blowout limits of practical flameholders over wide ranges of engine operating conditions.

1992 ◽  
Vol 114 (4) ◽  
pp. 776-782 ◽  
Author(s):  
M. R. Baxter ◽  
A. H. Lefebvre

Weak extinction data obtained from an experimental apparatus designed to simulate the characteristics of practical afterburner combustion systems are presented. The apparatus supplies mixtures of varied composition (equivalence ratio and degree of vitiation), temperature and velocity to Vee-gutter flame holders of various widths and shapes similar to those found in jet engine systems. The fuel employed is a liquid hydrocarbon whose chemical composition and physical properties correspond to those of aviation kerosine, JP5. An equation for predicting weak extinction limits which accounts for upstream vitiation and the chemical characteristics of the fuel is derived from stirred reactor theory. The correlation between the predictions and experimental results indicates that the stirred reactor approach can provide a framework for predicting the lean blowout limits of practical flameholders over wide ranges of engine operating conditions.


Author(s):  
Adel Mansour ◽  
Michael A. Benjamin

Single injector, high pressure, rig evaluation of the prototype Parker macrolaminate dual fuel premixer (previously tested at NETL, see Mansour et al., 2001) [1] with pressure swirl macrolaminate atomizers was conducted under simulated engine operating conditions running on No. 2 diesel fuel (DF2). Emissions, oscillations and lean blowout (LBO) performance on liquid fuel at high, part and no load operating points (pressures of 160, 100, 120 psig, and inlet temperatures of 690, 570, 590°F, respectively) and various pressure drops (ΔP/P) and air fuel ratio conditions were investigated. The results indicate that the Parker premixer design has the potential to reduce the DF2 NOX emission to below 15 ppmv, 15% O2. At simulated high load conditions with a nominal flame temperature (TPZ) of 2700°F, the NOX and CO emissions are approximately 10 and 2.5 ppmv at 15% O2, respectively. These results compare extremely favorable to existing commercially available premixer technologies tested under similar rig operating conditions. More importantly, the NOX yield for the Parker Macrolaminate premixer appears to be independent of operating conditions (from high to no load and various pressure drop conditions). Variations in combustor pressure, inlet temperature (T2) and residence time (τ) or pressure drop (ΔP/P) does not seem to have an effect on the formation of NOX. According to Leonard and Stegmaier (1993) [2], insensitivity of NOX formation to operating conditions is a good indication of high degree of premixing. Additionally, the premixer NOX data is only 1 to 2 ppmv higher than the jet stirred reactor (JSR) results (ran at T2 = 661°F, PCD = 14.7 psi and TPZ = 2762°F with similar DF2) of Lee et al., 2001 [3], further confirming the quality of premixing achieved. Combustion driven oscillations was not investigated by tuning the rig so that oscillations would not be a factor.


2004 ◽  
Vol 126 (3) ◽  
pp. 465-471
Author(s):  
Adel Mansour ◽  
Michael A. Benjamin

Single-injector high-pressure rig evaluation of the prototype Parker macrolaminate dual fuel premixer (previously tested at NETL, Mansour et al., 2001) with pressure swirl macrolaminate atomizers was conducted under simulated engine operating conditions running on No. 2 diesel fuel (DF2). Emissions, oscillations and lean blowout (LBO) performance on liquid fuel at high, part and no load operating points (pressures of 160, 100, 120 psig, and inlet temperatures of 690, 570, 590°F, respectively) and various pressure drops (ΔP/P) and air fuel ratio conditions were investigated. The results indicate that the Parker premixer design has the potential to reduce the DF2 NOX emission to below 15 ppmv, 15% O2. At simulated high load conditions with a nominal flame temperature TPZ of 2700°F, the NOX and CO emissions are approximately 10 and 2.5 ppmv at 15% O2, respectively. These NOX results have not been corrected for fuel bound nitrogen (FBN). From the studies of Lee (2000), small amounts of FBN in the liquid fuel generally are completely converted over to fuel NOX under lean premixed conditions. The fuel tested has a nominal 60 ppmw of FBN which converts to an estimated fuel NOX of 4 ppmv at 15% O2. These results compare extremely favorable to existing commercially available premixer technologies tested under similar rig operating conditions. More importantly, the NOX yield for the Parker Macrolaminate premixer appears to be independent of operating conditions (from high to no load and various pressure drop conditions). Variations in combustor pressure, inlet temperature T2 and residence time (τ) or pressure drop (ΔP/P) does not seem to have an effect on the formation of NOX. According to Leonard and Stegmaier (1993), insensitivity of NOX formation to operating conditions is a good indication of high degree of premixing. Additionally, the premixer NOX data is only 1 to 2 ppmv higher than the jet stirred reactor (JSR) results (ran at T2=661°F,PCD=1 atm and TPZ=2762°F with similar DF2) of Lee et al. (2001) further confirming the quality of premixing achieved. Combustion driven oscillations was not investigated by tuning the rig so that oscillations would not be a factor.


1968 ◽  
Vol 90 (2) ◽  
pp. 443-449 ◽  
Author(s):  
R. A. Burton

Pressure and velocity data are reported for measurements in a large-scale experimental apparatus, designed to act as a model of a spiral-groove configuration operating at turbulent Reynolds numbers, and using air as a working fluid. The results predict that inertial effects at the steps in film thickness will exert a dominant influence on flows in machine elements made in geometric similitude to the model. Negative gage pressures were indicated in the thin-film regions, and these would be expected to lead at times to film breakup in elements using a liquid as the working fluid. Furthermore, negative stiffness under displacement of the journal was indicated for some operating conditions. The results, taken together, indicate the role of inertial effects, and dangerous operating conditions as to film breakup and loss of load support.


2019 ◽  
Author(s):  
Ryther Anderson ◽  
Achay Biong ◽  
Diego Gómez-Gualdrón

<div>Tailoring the structure and chemistry of metal-organic frameworks (MOFs) enables the manipulation of their adsorption properties to suit specific energy and environmental applications. As there are millions of possible MOFs (with tens of thousands already synthesized), molecular simulation, such as grand canonical Monte Carlo (GCMC), has frequently been used to rapidly evaluate the adsorption performance of a large set of MOFs. This allows subsequent experiments to focus only on a small subset of the most promising MOFs. In many instances, however, even molecular simulation becomes prohibitively time consuming, underscoring the need for alternative screening methods, such as machine learning, to precede molecular simulation efforts. In this study, as a proof of concept, we trained a neural network as the first example of a machine learning model capable of predicting full adsorption isotherms of different molecules not included in the training of the model. To achieve this, we trained our neural network only on alchemical species, represented only by their geometry and force field parameters, and used this neural network to predict the loadings of real adsorbates. We focused on predicting room temperature adsorption of small (one- and two-atom) molecules relevant to chemical separations. Namely, argon, krypton, xenon, methane, ethane, and nitrogen. However, we also observed surprisingly promising predictions for more complex molecules, whose properties are outside the range spanned by the alchemical adsorbates. Prediction accuracies suitable for large-scale screening were achieved using simple MOF (e.g. geometric properties and chemical moieties), and adsorbate (e.g. forcefield parameters and geometry) descriptors. Our results illustrate a new philosophy of training that opens the path towards development of machine learning models that can predict the adsorption loading of any new adsorbate at any new operating conditions in any new MOF.</div>


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Author(s):  
Xin Luan ◽  
Zhongli Ji ◽  
Longfei Liu ◽  
Ruifeng Wang

Rigid filters made of ceramic or metal are widely used to remove solid particles from hot gases at temperature above 260 °C in the petrochemical and coal industries. Pulse-jet cleaning of fine dust from rigid filter candles plays a critical role in the long-term operation of these filters. In this study, an experimental apparatus was fabricated to investigate the behavior of a 2050 mm filter candle, which included monitoring the variation of pressure dynamic characteristics over time and observing the release of dust layers that allowed an analysis of the cleaning performance of ISO 12103-1 test dusts with different particle size distributions. These results showed the release behavior of these dusts could be divided into five stages: radial expansion, axial crack, flaky release, irregular disruption and secondary deposition. The cleaning performance of smaller sized dust particles was less efficient as compared with larger sized dust particles under the same operating conditions primarily because large, flaky-shaped dust aggregates formed during the first three stages were easily broken into smaller, dispersed fragments during irregular disruption that forced more particles back to the filter surface during secondary deposition. Also, a “low-pressure and long-pulse width” cleaning method improved the cleaning efficiency of the A1 ultrafine test dust from 81.4% to 95.9%.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 317-324 ◽  
Author(s):  
J.A. Libra ◽  
A. Schuchardt ◽  
C. Sahlmann ◽  
J. Handschag ◽  
U. Wiesmann ◽  
...  

The aeration systems of two full-scale activated sludge basins were compared over 2.5 years under the same operating conditions using dynamic off-gas testing. Only the material of the diffuser was different, membrane vs. ceramic tube diffusers. The experimental design took the complexity and dynamics of the system into consideration. The investigation has shown that, although the membrane diffusers have higher initial standard oxygen transfer efficiency (SOTE) and standard aeration efficiency (SAE), these decreased over time, while the SAE of the ceramic diffusers started lower, but increased slightly over the whole period. Measurement of air distribution in the basins along with dissolved oxygen concentration profiles have provided important information on improving process control and reducing energy costs. The results show that dynamic off-gas testing can effectively be used for monitoring the aeration system and to check design assumptions under operating conditions. The information can be used to improve the design of new aeration systems or in retro-fitting existing basins.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 36 ◽  
Author(s):  
Bruno Conti ◽  
Barbara Bosio ◽  
Stephen John McPhail ◽  
Francesca Santoni ◽  
Davide Pumiglia ◽  
...  

Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) technology offers interesting opportunities in the panorama of a larger penetration of renewable and distributed power generation, namely high electrical efficiency at manageable scales for both remote and industrial applications. In order to optimize the performance and the operating conditions of such a pre-commercial technology, an effective synergy between experimentation and simulation is fundamental. For this purpose, starting from the SIMFC (SIMulation of Fuel Cells) code set-up and successfully validated for Molten Carbonate Fuel Cells, a new version of the code has been developed for IT-SOFCs. The new release of the code allows the calculation of the maps of the main electrical, chemical, and physical parameters on the cell plane of planar IT-SOFCs fed in co-flow. A semi-empirical kinetic formulation has been set-up, identifying the related parameters thanks to a devoted series of experiments, and integrated in SIMFC. Thanks to a multi-sampling innovative experimental apparatus the simultaneous measurement of temperature and gas composition on the cell plane was possible, so that a preliminary validation of the model on local values was carried out. A good agreement between experimental and simulated data was achieved in terms of cell voltages and local temperatures, but also, for the first time, in terms of local concentration on the cell plane, encouraging further developments. This numerical tool is proposed for a better interpretation of the phenomena occurring in IT-SOFCs and a consequential optimization of their performance.


Author(s):  
Hossein Gholizadeh ◽  
Doug Bitner ◽  
Richard Burton ◽  
Greg Schoenau

It is well known that the presence of entrained air bubbles in hydraulic oil can significantly reduce the effective bulk modulus of hydraulic oil. The effective bulk modulus of a mixture of oil and air as pressure changes is considerably different than when the oil and air are not mixed. Theoretical models have been proposed in the literature to simulate the pressure sensitivity of the effective bulk modulus of this mixture. However, limited amounts of experimental data are available to prove the validity of the models under various operating conditions. The major factors that affect pressure sensitivity of the effective bulk modulus of the mixture are the amount of air bubbles, their size and the distribution, and rate of compression of the mixture. An experimental apparatus was designed to investigate the effect of these variables on the effective bulk modulus of the mixture. The experimental results were compared with existing theoretical models, and it was found that the theoretical models only matched the experimental data under specific conditions. The purpose of this paper is to specify the conditions in which the current theoretical models can be used to represent the real behavior of the pressure sensitivity of the effective bulk modulus of the mixture. Additionally, a new theoretical model is proposed for situations where the current models fail to truly represent the experimental data.


Sign in / Sign up

Export Citation Format

Share Document