Base-Metal Thermocouple Technology for Improved Temperature Measurement in Gas Turbine Engines

1993 ◽  
Author(s):  
C. Paul Furniss

During the next decade there will be growing pressures placed upon the manufacturers of gas turbines to produce more operationally efficient engines. There are two main end-use groupings for gas turbines. The parameters for efficiency may prove to be quite different for these end-use groups, requiring a separate emphasis for engineering design. With respect to aircraft propulsion gas turbines, the efficiencies may tend towards greater fuel economy and unit power outputs. In contrast to this the ground based gas turbine units may require increased unit power output but be restricted by the tightening emission requirements being dictated by international pollution laws. One of the key areas of focus for engineering design, in order to satisfy such performance demands, is that of improved operational control of the turbine. The process variables requiring accurate, reliable and repeatable monitoring and control include rotational speed, linear speed, pressure, mass flow rate and temperature. Whilst all of these phenomena require correct control, it may be argued that temperature is of extreme importance for both an operational efficiency and safety viewpoint. This paper will attempt to explore the problems associated with conventional methods of gas turbine temperature measurement and discuss possible solutions using novel new technologies that will allow the earlier realisation of these efficiency goals.

Author(s):  
John Viercinski ◽  
Matthew Hoffman ◽  
Ivan Pineiro ◽  
Dennis Russom ◽  
Helen Kozuhowski ◽  
...  

The U. S. Navy uses Rolls-Royce gas turbines for ship service power on the DDG-51 class destroyer and the CG-47 class cruiser. Both engines have duplex thermocouples (T/Cs) and redundant T/C harnesses for turbine temperature monitoring and control. One harness provides an average of all the installed T/Cs, while the other provides the full authority digital control (FADC) with an individual signal from each. The legacy FADC algorithm allows up to four T/Cs to be out of average on the individual harness. Any additional T/C failures will cause the control to ignore the entire individual harness and rely on the averaging harness alone. This logic has inadvertently led to multiple over-temp conditions and subsequent engine removals. A change to control logic has been developed that aims to prevent these over-temp scenarios and is currently being introduced to the fleet. This paper will discuss in depth the cause of the over-temp, the examination of the control logic and the correction that is designed to prevent it from recurring.


Author(s):  
Tomoki Taniguchi ◽  
Ryoji Tamai ◽  
Yoshihiko Muto ◽  
Satoshi Takami ◽  
Ryozo Tanaka ◽  
...  

Kawasaki Heavy Industries, Ltd (KHI) has started a comprehensive program to further improve performance and availability of existing Kawasaki gas turbines. In the program, one of the Kawasaki’s existing gas turbine was selected from the broad product line and various kinds of technology were investigated and adopted to further improve its thermal performance and availability. The new technologies involve novel film cooling of turbine nozzles, advanced and large-scale numerical simulations, new thermal barrier coating. The thermal performance target is combined cycle efficiency of 51.6% and the target ramp rate is 20% load per minute. The program started in 2015 and engine testing has just started. In this paper, details of the program are described, focusing on design procedure.


Author(s):  
Wolfgang Kappis ◽  
Stefan Florjancic ◽  
Uwe Ruedel

Market requirements for the heavy duty gas turbine power generation business have significantly changed over the last few years. With high gas prices in former times, all users have been mainly focusing on efficiency in addition to overall life cycle costs. Today individual countries see different requirements, which is easily explainable picking three typical trends. In the United States, with the exploitation of shale gas, gas prices are at a very low level. Hence, many gas turbines are used as base load engines, i.e. nearly constant loads for extended times. For these engines reliability is of main importance and efficiency somewhat less. In Japan gas prices are extremely high, and therefore the need for efficiency is significantly higher. Due to the challenge to partly replace nuclear plants, these engines as well are mainly intended for base load operation. In Europe, with the mid and long term carbon reduction strategy, heavy duty gas turbines is mainly used to compensate for intermittent renewable power generation. As a consequence, very high cyclic operation including fast and reliable start-up, very high loading gradients, including frequency response, and extended minimum and maximum operating ranges are required. Additionally, there are other features that are frequently requested. Fuel flexibility is a major demand, reaching from fuels of lower purity, i.e. with higher carbon (C2+), content up to possible combustion of gases generated by electrolysis (H2). Lifecycle optimization, as another important request, relies on new technologies for reconditioning, lifetime monitoring, and improved lifetime prediction methods. Out of Alstom’s recent research and development activities the following items are specifically addressed in this paper. Thermodynamic engine modelling and associated tasks are discussed, as well as the improvement and introduction of new operating concepts. Furthermore extended applications of design methodologies are shown. An additional focus is set ono improve emission behaviour understanding and increased fuel flexibility. Finally, some applications of the new technologies in Alstom products are given, indicating the focus on market requirements and customer care.


2022 ◽  
Vol 43 (3) ◽  
Author(s):  
Jonathan Pearce ◽  
Declan Tucker ◽  
Carmen García Izquierdo ◽  
Raul Caballero ◽  
Trevor Ford ◽  
...  

AbstractMineral insulated, metal sheathed (MI) Type K and Type N thermocouples are widely used in industry for process monitoring and control. One factor that limits their accuracy is the dramatic decrease in the insulation resistance at temperatures above about 600 °C which results in temperature measurement errors due to electrical shunting. In this work the insulation resistance of a cohort of representative MI thermocouples was characterised at temperatures up to 1160 °C, with simultaneous measurements of the error in indicated temperature by in situ comparison with a reference Type R thermocouple. Intriguingly, there appears to be a systematic relationship between the insulation resistance and the error in the indicated temperature. At a given temperature, as the insulation resistance decreases, there is a corresponding increasingly negative error in the temperature measurement. Although the measurements have a relatively large uncertainty (up to about 1 °C in temperature error and up to about 10 % in insulation resistance measurement), the trend is apparent at all temperatures above 600 °C, which suggests that it is real. Furthermore, the correlation disappears at temperatures below about 600 °C, which is consistent with the well-established diminution of insulation resistance breakdown effects below that temperature. This raises the intriguing possibility of using the as-new MI thermocouple calibration as an indicator of insulation resistance breakdown: large deviations of the electromotive force (emf) in the negative direction could indicate a correspondingly low insulation resistance.


1985 ◽  
Vol 22 (01) ◽  
pp. 1-27
Author(s):  
Ralph J. Della Rocca ◽  
John D. Stehn

The need for a gas turbine training facility became apparent with the introduction into the U.S. Navy fleet of the first ships of the FFG7 Frigate and DD963 Destroyer Classes with gas turbine propulsion plants. This facility, constructed at the Great Lakes Naval Training Center, provides "hands-on" training for maintenance and operation of marine gas turbines and associated propulsion plant components and controls and their piping and electrical systems. The Navy intends to train at this facility approximately 1000 personnel per year in the use of their latest and newest propulsion plants. The design of the facility reproduces as closely as possible the existing machinery and control spaces of the two different classes of ships and integrates them into a single main building with the school and the mechanical equipment wings. This paper presents an overview of the need for well-trained, qualified naval personnel to man the expanding fleet of marine gas turbine propulsion systems, existing training facilities and the various stages in the development of the FFG7/DD963 Gas Turbine Maintenance and Operational Training Facility. In regard to the facility, the paper discusses the planning and managing of the project; development of the designs for the building and propulsion plants; construction of the building facilities and FFG7 plant; the fabrication, transportation and erection of the FFG7 within the building; and the testing and operation of the FFG7 plant since light-off. Major emphasis is given to the FFG7 plant since the DD963 plant is being reconsidered in conjunction with the CG47 upgrading and is awaiting a decision to proceed.


2021 ◽  
Author(s):  
Takashi Nishiumi ◽  
Hirofumi Ohara ◽  
Kotaro Miyauchi ◽  
Sosuke Nakamura ◽  
Toshishige Ai ◽  
...  

Abstract In recent years, MHPS achieved a NET M501J gas turbine combined cycle (GTCC) efficiency in excess of 62% operating at 1,600°C, while maintaining NOx under 25ppm. Taking advantage of our gas turbine combustion design, development and operational experience, retrofits of earlier generation gas turbines have been successfully applied and will be described in this paper. One example of the latest J-Series technologies, a conventional pilot nozzle was changed to a premix type pilot nozzle for low emission. The technology was retrofitted to the existing F-Series gas turbines, which resulted in emission rates of lower than 9ppm NOx(15%O2) while maintaining the same Turbine Inlet Temperature (TIT: Average Gas Temperature at the exit of the transition piece). After performing retrofitting design, high pressure rig tests, the field test prior to commercial operation was conducted on January 2019. This paper describes the Ultra-Low NOx combustor design features, retrofit design, high pressure rig test and verification test results of the upgraded M501F gas turbine. In addition, it describes another upgrade of turbine to improve efficiency and of combustion control system to achieve low emissions. Furthermore it describes the trouble-free upgrade of seven (7) units, which was completed by utilizing MHPS integration capabilities, including handling all the design, construction and service work of the main equipment, plant and control systems.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2358 ◽  
Author(s):  
Omar Mohamed ◽  
Ashraf Khalil

This paper reviews the modeling techniques and control strategies applied to gas turbine power generation plants. Recent modeling philosophies are discussed and the state-of-the-art feasible strategies for control are shown. Research conducted in the field of modeling, simulation, and control of gas turbine power plants has led to notable advancements in gas turbines’ operation and energy efficiency. Tracking recent achievements and trends that have been made is essential for further development and future research. A comprehensive survey is presented here that covers the outdated attempts toward the up-to-date techniques with emphasis on different issues and turbines’ characteristics. Critical review of the various published methodologies is very useful in showing the importance of this research area in practical and technical terms. The different modeling approaches are classified and each category is individually investigated by reviewing a considerable number of research articles. Then, the main features of each category or approach is reported. The modern multi-variable control strategies that have been published for gas turbines are also reviewed. Moreover, future trends are proposed as recommendations for planned research.


1990 ◽  
Vol 112 (2) ◽  
pp. 176-181 ◽  
Author(s):  
R. A. Sylvestre ◽  
R. J. Dupuis

The background and evolution of gas turbine fuel controls is examined in this paper from a Naval perspective. The initial application of aeroderivative gas turbines to Navy ships utilized the engine’s existing aircraft fuel controls, which were coupled to the ship’s hydropneumatic machinery control system. These engines were adapted to Naval requirements by including engine specific functions. The evolution of Naval gas turbine controllers first to analog electronic, and more recently, to distributed digital controls, has increased the system complexity and added a number of levels of machinery protection. The design of a specific electronic control module is used to illustrate the current state of the technology. The paper concludes with a discussion of the further need to address the issues of fuel handling, metering and control in Navy ships with particular emphasis on integration in the marine environment.


1984 ◽  
Vol 106 (3) ◽  
pp. 654-660
Author(s):  
M. K. Ellingsworth ◽  
Ho-Tien Shu ◽  
S. C. Kuo

The object of this study was to investigate flow distribution characteristics and control in the marine gas turbine diffusers most suitable for waste heat recovery systems. The major technical problems associated with nonuniform flow distributions in heat-exchanger or flow-equipment systems were reviewed. Various means to alleviate or minimize these undesirable problems were evaluated. Four sets of candidate flow-distribution data were selected from the measured exhaust velocities of typical marine gas turbines for input to the present study. A two-dimensional turbulent flow model for diffusers was developed and computerized, and five diffuser geometries suitable for marine gas turbine waste-heat recovery applications were investigated, based on the actual inlet velocity data. The exit flow distribution characteristics (velocity, mass-flux, pressure recovery, and temperature) and diffuser performance with and without flow-distribution controls were analyzed using the computer programs developed. It was found that nonuniform flow distribution in the gas turbine exhaust can reduce diffuser efficiency to half of that attainable with uniform flow, and that the diffuser exhaust velocities will be more uniform by using guide vanes and/or flow injection than merely using nonsymmetric diffusion angles. The diffuser efficiency can be improved 20 to 36 percentage points by using these contort means.


Sign in / Sign up

Export Citation Format

Share Document