scholarly journals Experimental Validation of Turbine Blade Dynamics Design Methodology

Author(s):  
S. Salvano ◽  
C. Schips

This paper deals with the most relevant experimental results regarding turbine blade dynamics acquired from several designs: from both military and commercial aeroengines to industrial gas turbines. On this basis, a common design methodology has been validated for the different applications. Campbell and Goodman diagrams are the basic tools used to verify resonances and vibratory stress margins. In addition to that, a frequency response type of calculation was developed, nevertheless facing the problem of exciting force and damping assumption. High emphasis is given to evaluating the damping characteristics of the blade: in-house programs have been validated through dedicated tests of shroud optimization and platform damper design. Experimental tests are in any case necessary when a new blade is designed; however the confidence in the design tools gained by their experimental validation is likely to give better chances to have a good new design, shortening the relative development phase.

Author(s):  
Alex Torkaman ◽  
Gregory Vogel ◽  
Steve Fiebiger ◽  
Doug Dietrich ◽  
Ron Washburn

Two Siemens Westinghouse SW501F D2 industrial gas turbines were successfully upgraded during a Modified HGP service interval. This paper details the technical aspects of this upgrade and validation of critical turbine blade flutter related parameters during commissioning. Significant performance improvement was achieved by implementation of aerodynamic redesigns of certain compressor and turbine components. An upgraded combustion system and newly installed continuous tuning and health monitoring systems provided operational flexibility and reduction in emissions. Due to historical issues with the 4th stage blade flutter, significant analytical efforts were invested in the structural redesign of the 4th stage blade to predict and avoid flutter and resonance regions. Latest methods of aerodynamic work calculations were employed during design to ensure flutter free operation of this component. Validation steps were implemented using blade tip timing technology to determine synchronous and non-synchronous vibration characteristics of the 4th stage blades during commissioning. Performance tests per ASME PTC-22 were conducted immediately before and after the outage to provide an accurate measurement of engine performance. Analysis of the performance data after installation and commissioning of the upgrade package confirmed the performance improvement objectives on power output and heat rate were achieved on these two units. Live monitoring and analysis of blade instrumentation data during commissioning and further analysis afterward confirmed flutter free operation of the 4th stage turbine blade.


2004 ◽  
Vol 126 (1) ◽  
pp. 119-126 ◽  
Author(s):  
F. G. Elliott ◽  
R. Kurz ◽  
C. Etheridge ◽  
J. P. O’Connell

Industrial Gas Turbines allow operation with a wide variety of gaseous and liquid fuels. To determine the suitability for operation with a gas fuel system, various physical parameters of the proposed fuel need to be determined: heating value, dew point, Joule-Thompson coefficient, Wobbe Index, and others. This paper describes an approach to provide a consistent treatment for determining the above physical properties. Special focus is given to the problem of determining the dew point of the potential fuel gas at various pressure levels. A dew point calculation using appropriate equations of state is described, and results are presented. In particular the treatment of heavier hydrocarbons, and water is addressed and recommendations about the necessary data input are made. Since any fuel gas system causes pressure drops in the fuel gas, the temperature reduction due to the Joule-Thompson effect has to be considered and quantified. Suggestions about how to approach fuel suitability questions during the project development and construction phase, as well as in operation are made.


Author(s):  
M. Zugic ◽  
J. R. Culham ◽  
P. Teertstra ◽  
Y. Muzychka ◽  
K. Horne ◽  
...  

Compact, liquid cooled heat sinks are used in applications where high heat fluxes and boundary resistance preclude the use of more traditional air cooling techniques. Four different liquid cooled heat sink designs, whose core geometry is formed by overlapped ribbed plates, are examined. The objective of this analysis is to develop models that can be used as design tools for the prediction of overall heat transfer and pressure drop of heat sinks. Models are validated for Reynolds numbers between 300 and 5000 using experimental tests. The agreement between the experiments and the models ranges from 2.35% to 15.3% RMS.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Agnese Coscetta ◽  
Aldo Minardo ◽  
Lucio Olivares ◽  
Maurizio Mirabile ◽  
Mario Longo ◽  
...  

Wind turbine (WT) blade is one of the most important components in WTs, as it is the key component for receiving wind energy and has direct influence on WT operation stability. As the size of modern turbine blade increases, condition monitoring and maintenance of blades become more important. Strain detection is one of the most effective methods to monitor blade conditions. In this paper, a distributed fiber-optic strain sensor is used for blade monitoring. Preliminary experimental tests have been carried out over a 14 m long WT composite blade, demonstrating the possibility of performing distributed strain and vibration measurements.


2017 ◽  
Vol 24 (14) ◽  
pp. 3206-3218
Author(s):  
Yohei Kushida ◽  
Hiroaki Umehara ◽  
Susumu Hara ◽  
Keisuke Yamada

Momentum exchange impact dampers (MEIDs) were proposed to control the shock responses of mechanical structures. They were applied to reduce floor shock vibrations and control lunar/planetary exploration spacecraft landings. MEIDs are required to control an object’s velocity and displacement, especially for applications involving spacecraft landing. Previous studies verified numerous MEID performances through various types of simulations and experiments. However, previous studies discussing the optimal design methodology for MEIDs are limited. This study explicitly derived the optimal design parameters of MEIDs, which control the controlled object’s displacement and velocity to zero in one-dimensional motion. In addition, the study derived sub-optimal design parameters to control the controlled object’s velocity within a reasonable approximation to derive a practical design methodology for MEIDs. The derived sub-optimal design methodology could also be applied to MEIDs in two-dimensional motion. Furthermore, simulations conducted in the study verified the performances of MEIDs with optimal/sub-optimal design parameters.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


2007 ◽  
Vol 353-358 ◽  
pp. 1935-1938 ◽  
Author(s):  
Yasuhiro Yamazaki ◽  
T. Kinebuchi ◽  
H. Fukanuma ◽  
N. Ohno ◽  
K. Kaise

Thermal barrier coatings (TBCs), that reduce the temperature in the underlying substrate material, are an essential requirement for the hot section components of industrial gas turbines. Recently, in order to take full advantage of the potential of the TBC systems, experimental and analytical investigations in TBC systems have been performed. However there is a little information on the deformation behavior of the top coating. In addition, the effects of the thermal exposure and the process parameters on the mechanical properties of the top coating have never been clarified. From these backgrounds, the effects of the process variables in APS and the thermal exposure on the mechanical properties were investigated in order to optimize the APS process of top coatings. The experimental results indicated that the mechanical properties of the APS-TBC, i.e. the tensile strength and the elastic modulus, were significantly changed by the process variables and the long term thermal exposure. The microstructural investigation was also carried out and the relationship between the mechanical properties and the porosity was discussed.


Author(s):  
Cesar Celis ◽  
Érica Xavier ◽  
Tairo Teixeira ◽  
Gustavo R. S. Pinto

This work describes the development and implementation of a signal analysis module which allows the reliable detection of operating regimes in industrial gas turbines. Its use is intended for steady state-based condition monitoring and diagnostics systems. This type of systems requires the determination of the operating regime of the equipment, in this particular case, of the industrial gas turbine. After a brief introduction the context in which the signal analysis module is developed is highlighted. Next the state of the art of the different methodologies used for steady state detection in equipment is summarized. A detailed description of the signal analysis module developed, including its different sub systems and the main hypotheses considered during its development, is shown to follow. Finally the main results obtained through the use of the module developed are presented and discussed. The results obtained emphasize the adequacy of this type of procedures for the determination of operating regimes in industrial gas turbines.


2007 ◽  
Vol 24 (3) ◽  
pp. 149-162 ◽  
Author(s):  
J.R. Nicholls ◽  
N.J. Simms ◽  
A. Encinas-Oropesa

Sign in / Sign up

Export Citation Format

Share Document