scholarly journals GE MS7001 Gas Turbine Advanced Technology Uprate

Author(s):  
Michael A. Cocca ◽  
Arthur Stappenbeck ◽  
James Van Wormer

Today’s competitive world of Independent Power Producers and electric wheeling has increased demand for lower operating and maintenance costs and increased revenues. This need is driving gas turbine research and development. Application of advanced technology to operating units can increase output, improve total plant efficiency, increase steam production and reduce maintenance costs. Cogen Technologies is one owner that has applied advanced technology to uprate five Frame 7EA gas turbines at its Linden plant and one unit at its Camden facility. At the Linden plant, total plant efficiency was improved by more than 2%. This paper will discuss the components included in these advanced technology uprates, the gas turbine and combined-cycle plant performance improvements that were realized, and an economic model that can be used to evaluate the potential benefits of an uprate.

Author(s):  
Weimar Mantilla ◽  
José García ◽  
Rafael Guédez ◽  
Alessandro Sorce

Abstract Under new scenarios with high shares of variable renewable electricity, combined cycle gas turbines (CCGT) are required to improve their flexibility, in terms of ramping capabilities and part-load efficiency, to help balance the power system. Simultaneously, liberalization of electricity markets and the complexity of its hourly price dynamics are affecting the CCGT profitability, leading the need for optimizing its operation. Among the different possibilities to enhance the power plant performance, an inlet air conditioning unit (ICU) offers the benefit of power augmentation and “minimum environmental load” (MEL) reduction by controlling the gas turbine inlet temperature using cold thermal energy storage and a heat pump. Consequently, an evaluation of a CCGT integrated with this inlet conditioning unit including a day-ahead optimized operation strategy was developed in this study. To establish the hourly dispatch of the power plant and the operation mode of the inlet conditioning unit to either cool down or heat up the gas turbine inlet air, a mixed-integer linear optimization (MILP) was formulated using MATLAB, aiming to maximize the operational profit of the plant within a 24-hours horizon. To assess the impact of the proposed unit operating under this dispatch strategy, historical data of electricity and natural gas prices, as well as meteorological data and CO2 emission allowances price, have been used to perform annual simulations of a reference power plant located in Turin, Italy. Furthermore, different equipment capacities and parameters have been investigated to identify trends of the power plant performance. Lastly, a sensitivity analysis on market conditions to test the control strategy response was also considered. Results indicate that the inlet conditioning unit, together with the dispatch optimization, increases the power plant’s operational profit by achieving a wider operational range, particularly important during peak and off-peak periods. For the specific case study, it is estimated that the net present value of the CCGT integrated with the ICU is 0.5% higher than the power plant without the unit. In terms of technical performance, results show that the unit reduces the minimum environmental load by approximately 1.34% and can increase the net power output by 0.17% annually.


Author(s):  
V. C. Tendon ◽  
A. Zabrodsky

Development and operation of larger size gas turbines have demonstrated that higher turbine inlet temperature can be sustained due to advancement in material and cooling technology. After a feasibility study it was determined that modern available technology can be applied to existing previous generation of machines. These programs are identified as “The Performance Upgrade of Gas Turbine”. Amongst the significant benefits that can be realized by retrofitting state of art parts in existing machines are higher power and more durable parts. This paper discusses various programs that are currently offered and implementation technique of upgrading the machines. A recent example is also presented. These unique programs are particularly attractive at the time of overall life consumption of the initial set of hot parts. At that point in an operating gas turbine it will be beneficial to retrofit the latest configuration parts to realize the performance improvements.


Author(s):  
Dale Grace ◽  
Thomas Christiansen

Unexpected outages and maintenance costs reduce plant availability and can consume significant resources to restore the unit to service. Although companies may have the means to estimate cash flow requirements for scheduled maintenance and on-going operations, estimates for unplanned maintenance and its impact on revenue are more difficult to quantify, and a large fleet is needed for accurate assessment of its variability. This paper describes a study that surveyed 388 combined-cycle plants based on 164 D/E-class and 224 F-class gas turbines, for the time period of 1995 to 2009. Strategic Power Systems, Inc. (SPS®), manager of the Operational Reliability Analysis Program (ORAP®), identified the causes and durations of forced outages and unscheduled maintenance and established overall reliability and availability profiles for each class of plant in 3 five-year time periods. This study of over 3,000 unit-years of data from 50 Hz and 60 Hz combined-cycle plants provides insight into the types of events having the largest impact on unplanned outage time and cost, as well as the risks of lost revenue and unplanned maintenance costs which affect plant profitability. Outage events were assigned to one of three subsystems: the gas turbine equipment, heat recovery steam generator (HRSG) equipment, or steam turbine equipment, according to the Electric Power Research Institute’s Equipment Breakdown Structure (EBS). Costs to restore the unit to service for each main outage cause were estimated, as were net revenues lost due to unplanned outages. A statistical approach to estimated costs and lost revenues provides a risk-based means to quantify the impact of unplanned events on plant cash flow as a function of class of gas turbine, plant subsystem, and historical timeframe. This statistical estimate of the costs of unplanned outage events provides the risk-based assessment needed to define the range of probable costs of unplanned events. Results presented in this paper demonstrate that non-fuel operation and maintenance costs are increased by roughly 8% in a typical combined-cycle power plant due to unplanned maintenance events, but that a wide range of costs can occur in any single year.


Author(s):  
F. L. Robson ◽  
D. J. Seery

The Department of Energy’s Federal Energy Technology Center (FETC) is sponsoring the Combustion 2000 Program aimed at introducing clean and more efficient advanced technology coal-based power systems in the early 21st century. As part of this program, the United Technologies Research Center has assembled a seven member team to identify and develop the technology for a High Performance Power Systems (HIPPS) that will provide in the near term, 47% efficiency (HHV), and meet emission goals only one-tenth of current New Source Performance Standards for coal-fired power plants. In addition, the team is identifying advanced technologies that could result in HIPPS with efficiencies approaching 55% (HHV). The HIPPS is a combined cycle that uses a coal-fired High Temperature Advanced Furnace (HITAF) to preheat compressor discharge air in both convective and radiant heaters. The heated air is then sent to the gas turbine where additional fuel, either natural gas or distillate, is burned to raise the temperature to the levels of modern gas turbines. Steam is raised in the HITAF and in a Heat Recovery Steam Generator for the steam bottoming cycle. With state-of-the-art frame type gas turbines, the efficiency goal of 47% is met in a system with more than two-thirds of the heat input furnished by coal. By using advanced aeroderivative engine technology, HIPPS in combined-cycle and Humid Air Turbine (HAT) cycle configurations could result in efficiencies of over 50% and could approach 55%. The following paper contains descriptions of the HIPPS concept including the HITAF and heat exchangers, and of the various gas turbine configurations. Projections of HIPPS performance, emissions including significant reduction in greenhouse gases are given. Application of HIPPS to repowering is discussed.


Author(s):  
Matthias Hiddeman ◽  
Peter Marx

The GT26 gas turbine provides an additional degree of flexibility as the engine operates at high efficiencies from part load to full load while still maintaining low NOx emissions. The sequential combustion, with the EV burner as the basis for this flexibility also extends to the ability to handle wide fluctuations in fuel gas compositions. Increased mass flow was the main driver for the latest GT26 upgrade, resulting in substantial performance improvements. In order to ensure high levels of reliability and availability Alstom followed their philosophy of evolutionary steps to continuously develop their gas turbines. A total of 47 engines of this upgrade of the GT26 gas turbine have been ordered worldwide to date (Status: January 2010) enhancing the business case of power generators by delivering superior operational and fuel flexibility and combined cycle efficiencies up to and beyond 59%.


Author(s):  
Christoph Schneider ◽  
Vladimir Navrotsky ◽  
Prith Harasgama

ABB has approximately 200 GT11N and GT11D type gas turbines currently operating in simple cycle and combined cycle power plants. Most of these machines are fairly mature with many approaching the end of their economic life. In order that the power producer may continue to operate a fleet with improved performance, Advanced Air Cooling Technology and Advanced Turbine Aerodynamics have been utilized to uprate these engines with the implementation of a completely new turbine module. The objective of the uprating program was to implement the advanced aero/cooling technology into a complete new turbine module with: • Improved power output for the gas turbine • Increase the GT cycle efficiency • Maintain or improve the gas turbine RAM (Reliability, Availability & Maintainability) • Reduce the Cost of Electricity • Maintain or reduce the emissions of the gas turbine The GT11NM gas turbine has been developed based on the GT11N which has been in operation since 1987 and Midland Cogeneration Venture (MCV-Midland, Michigan) was chosen to demonstrate the uprated GT11NM. The upate/retrofit of the GT11N engine was conducted in May/June 1997 and the resulting gas turbine - GT11NM has met and exceeded the performance goals set at the onset of the development program. The next sections detail the main changes to the turbine and the resulting performance improvements as established with the demonstration at Midland, Michigan.


Author(s):  
Thomas P. Schmitt ◽  
Christopher R. Banares ◽  
Benjamin D. Morlang ◽  
Matthew C. Michael

Many modern power plants feature gas turbines with advanced control systems that allow a greater level of performance enhancements, over a broader range of the combined-cycle plant’s operating environment, compared to conventional systems. Control system advancements tend to outpace a plant’s construction and commissioning timescale. Often, the control algorithms and settings in place at the final guarantee performance test will differ significantly from those envisioned during the contract agreement phase. As such, the gas turbine’s actual performance response to changes in boundary conditions, such as air temperature and air humidity, will be considerably different than the response illustrated on the initial correction curves. For the sake of technical accuracy, the performance correction curves should be updated to reflect the as-built, as-left behavior of the plant. By providing the most technically accurate curves, the needs of the new plant performance test are satisfied. Also, plant operators receive an accurate means to trend performance over time. The performance correction curves are intended to provide the most technically accurate assurance that the corrected test results are independent of boundary conditions that persist during the performance test. Therefore, after the gas turbine control algorithms and/or settings have been adjusted, the performance correction curves — whether specific to gas turbines or overall combined-cycle plants — should be updated to reflect any change in turbine response. This best practice maintains the highest level of technical accuracy. Failure to employ the available advanced gas turbine control system upgrades can limit the plant performance over the ambient operating regime. Failure to make a corresponding update to the correction curves can cause additional inaccuracy in the performance test’s corrected results. This paper presents a high-level discussion of GE’s recent gas turbine control system advancements, and emphasizes the need to update performance correction curves based on their impact.


Author(s):  
Christian Engelbert ◽  
Joseph J. Fadok ◽  
Robert A. Fuller ◽  
Bernd Lueneburg

Driven by the requirements of the US electric power market, the suppliers of power plants are challenged to reconcile both plant efficiency and operating flexibility. It is also anticipated that the future market will require more power plants with increased power density by means of a single gas turbine based combined-cycle plant. Paramount for plant efficiency is a highly efficient gas turbine and a state-of-the-art bottoming cycle, which are well harmonized. Also, operating and dispatch flexibility requires a bottoming cycle that has fast start, shutdown and cycling capabilities to support daily start and stop cycles. In order to meet these requirements the author’s company is responding with the development of the single-shaft 1S.W501G combined-cycle power plant. This nominal 400MW class plant will be equipped with the highly efficient W501G gas turbine, hydrogen-cooled generator, single side exhausting KN steam turbine and a Benson™ once-through heat recovery steam generator (Benson™-OT HRSG). The single-shaft 1S.W501G design will allow the plant not only to be operated economically during periods of high demand, but also to compete in the traditional “one-hour-forward” trading market that is served today only by simple-cycle gas turbines. By designing the plant with fast-start capability, start-up emissions, fuel and water consumption will be dramatically reduced. This Reference Power Plant (RPP) therefore represents a logical step in the evolution of combined-cycle power plant designs. It combines both the experiences of the well-known 50Hz single-shaft 1S.V94.3A plant with the fast start plant features developed for the 2.W501F multi-shaft RPP. The paper will address results of the single-shaft 1S.W501G development program within the authors’ company.


2006 ◽  
Vol 128 (2) ◽  
pp. 326-335 ◽  
Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto

In recent years, deregulation in the power generation market worldwide combined with significant variation in fuel prices and a need for flexibility in terms of power augmentation specially during periods of high electricity demand (summer months or noon to 6:00 p.m.) has forced electric utilities, cogenerators and independent power producers to explore new power generation enhancement technologies. In the last five to ten years, inlet fogging approach has shown more promising results to recover lost power output due to increased ambient temperature compared to the other available power enhancement techniques. This paper presents the first systematic study on the effects of both inlet evaporative and overspray fogging on a wide range of combined cycle power plants utilizing gas turbines available from the major gas turbine manufacturers worldwide. A brief discussion on the thermodynamic considerations of inlet and overspray fogging including the effect of droplet dimension is also presented. Based on the analyzed systems, the results show that high pressure inlet fogging influences performance of a combined cycle power plant using an aero-derivative gas turbine differently than with an advanced technology or a traditional gas turbine. Possible reasons for the observed differences are discussed.


Author(s):  
W. Peter Sarnacki ◽  
Richard Kimball ◽  
Barbara Fleck

The integration of micro turbine engines into the engineering programs offered at Maine Maritime Academy (MMA) has created a dynamic, hands-on approach to learning the theoretical and operational characteristics of a turbojet engine. Maine Maritime Academy is a fully accredited college of Engineering, Science and International Business located on the coast of Maine and has over 850 undergraduate students. The majority of the students are enrolled in one of five majors offered at the college in the Engineering Department. MMA already utilizes gas turbines and steam plants as part of the core engineering training with fully operational turbines and steam plant laboratories. As background, this paper will overview the unique hands-on nature of the engineering programs offered at the institution with a focus of implementation of a micro gas turbine trainer into all engineering majors taught at the college. The training demonstrates the effectiveness of a working gas turbine to translate theory into practical applications and real world conditions found in the operation of a combustion turbine. This paper presents the efforts of developing a combined cycle power plant for training engineers in the operation and performance of such a plant. Combined cycle power plants are common in the power industry due to their high thermal efficiencies. As gas turbines/electric power plants become implemented into marine applications, it is expected that combined cycle plants will follow. Maine Maritime Academy has a focus on training engineers for the marine and stationary power industry. The trainer described in this paper is intended to prepare engineers in the design and operation of this type of plant, as well as serve as a research platform for operational and technical study in plant performance. This work describes efforts to combine these laboratory resources into an operating combined cycle plant. Specifically, we present efforts to integrate a commercially available, 65 kW gas turbine generator system with our existing steam plant. The paper reviews the design and analysis of the system to produce a 78 kW power plant that approaches 35% thermal efficiency. The functional operation of the plant as a trainer is presented as the plant is designed to operate with the same basic functionality and control as a larger commercial plant.


Sign in / Sign up

Export Citation Format

Share Document