scholarly journals A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor

1996 ◽  
Author(s):  
Steven L. Puterbaugh ◽  
William W. Copenhaver ◽  
Chunill Hah ◽  
Arthur J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier-Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model under-predicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor is also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/sec/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip sped was 457.2 m/sec (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.

1997 ◽  
Vol 119 (3) ◽  
pp. 452-459 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver ◽  
C. Hah ◽  
A. J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier–Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model underpredicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor are also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/s/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip speed was 457.2 m/s (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


2020 ◽  
Vol 178 ◽  
pp. 01013
Author(s):  
Yuri Galerkin ◽  
Aleksandr Drozdov ◽  
Sergey Sibiriakov

The paper presents the joint experience of the NPO “Turbotekhnika” and the R&D Laboratory “Gas Dynamics of Turbomachines” of SPbPU for designing a centrifugal compressor operating at pressure ratio 1.61 and a mass flow rate of 0.62 kg/s. The design was executed using the Universal modelling method and the inviscid quasi-three-dimensional calculation program 3DM.023. At the first step, by the preliminary design program, the stage dimensions were determined. The expected gas-dynamic characteristics are calculated. At the final design step, stator elements were offered by NPO “Turbotekhnika” and the configuration of the impeller blades was optimized based on the non-viscous quasi-three-dimensional calculations. NPO “Turbotekhnika” designed, manufactured and tested the 140E compressor at blade velocities 150, 200, 250 and 300 m/s. A comparison and analysis of experimental and calculated characteristics is presented. The design pressure ratio was calculated almost exactly for the design flow rate at a blade velocity of 300 m/s. The expected efficiency was confirmed. The mathematical model slightly overestimates the efficiency and the pressure ratio for the off-design flow rates.


1980 ◽  
Vol 102 (4) ◽  
pp. 883-889 ◽  
Author(s):  
P. W. McDonald ◽  
C. R. Bolt ◽  
R. J. Dunker ◽  
H. B. Weyer

The flow field within the rotor of a transonic axial compressor has been computed and compared to measurements obtained with an advanced laser velocimeter. The compressor was designed for a total pressure ratio of 1.51 at a relative tip Mach number of 1.4. The comparisons are made at 100 percent design speed (20,260 RPM) with pressure ratios corresponding to peak efficiency, near surge, and wide open discharge operating conditions. The computational procedure iterates between a blade-to-blade calculation and an intrablade through flow calculation. Calculated Mach number contours, surface pressure distributions, and exit total pressure profiles are in agreement with the experimental data demonstrating the usefulness of quasi three-dimensional calculations in compressor design.


Author(s):  
Y. S. Li ◽  
R. G. Wells

This paper presents the aerodynamic design and initial test results from a three-stage transonic compressor developed by ALSTOM Gas Turbines Ltd. The Advanced Transonic Compressor (ATC) was designed using a design system based on three-dimensional (3D) Navier-Stokes CFD codes in contrast to the more conventional design approach centred around the use of throughflow and blade to blade solvers. The customised 3D multiple-circular-arc (MCA) and controlled-diffusion (CD) airfoils have replaced the double-circular-arc (DCA) profiles used previously. The use of both single row and multistage 3D CFD codes has enabled the potential performance improvements from the application of new blade designs to be predicted and comparisons between conventional and new blades to be made. Rig test results have confirmed that the target design mass flow rate and pressure ratio have been successfully achieved in the first build with a design point efficiency higher than that possible from the conventional design. Tests have demonstrated that the compressor has the required surge margin at design and off design speeds to ensure satisfactory operation when transferred to the multistage compressor environment.


Author(s):  
Shota Moriguchi ◽  
Hironori Miyazawa ◽  
Takashi Furusawa ◽  
Satoru Yamamoto

In this study, we simulated moist-air flows through a 3-D transonic compressor rotor, NASA Rotor 37, to investigate the thermophysical effects of evaporation of water droplets on 3-D compressor aerodynamics. The obtained results indicated that the total pressure ratio increased in the moist-air cases when compared with dry-air case as a result of the cooling due to evaporation. While the choking mass-flow rate is almost identical for the dry-air case and the moist-air cases, the operating curve was shifted to nearly choked state in the moist-air cases. Besides this, unsteady flows were obtained at higher mass-flow rate in the moist-air cases when compared with the dry-air case. As a result, a significant deterioration in the operation was observed in the moist-air cases. This is due to the rapid and significant evaporation of water droplets after the passage shock. A secondary flow streaming radially outside toward the tip through the separated region intensified and contributed to a formation of large blockage around the tip region.


Author(s):  
Chunill Hah ◽  
Douglas C. Rabe ◽  
Thomas J. Sullivan ◽  
Aspi R. Wadia

The effects of circumferential distortions in inlet total pressure on the flow field in a low-aspect-ratio, high-speed, high-pressure-ratio, transonic compressor rotor are investigated in this paper. The flow field was studied experimentally and numerically with and without inlet total pressure distortion. Total pressure distortion was created by screens mounted upstream from the rotor inlet. Circumferential distortions of 8 periods per revolution were investigated at two different rotor speeds. The unsteady blade surface pressures were measured with miniature pressure transducers mounted in the blade. The flow fields with and without inlet total pressure distortion were analyzed numerically by solving steady and unsteady forms of the Reynolds-averaged Navier-Stokes equations. Steady three-dimensional viscous flow calculations were performed for the flow without inlet distortion while unsteady three-dimensional viscous flow calculations were used for the flow with inlet distortion. For the time-accurate calculation, circumferential and radial variations of the inlet total pressure were used as a time-dependent inflow boundary condition. A second-order implicit scheme was used for the time integration. The experimental measurements and the numerical analysis are highly complementary for this study because of the extreme complexity of the flow field. The current investigation shows that inlet flow distortions travel through the rotor blade passage and are convected into the following stator. At a high rotor speed where the flow is transonic, the passage shock was found to oscillate by as much as 20% of the blade chord, and very strong interactions between the unsteady passage shock and the blade boundary layer were observed. This interaction increases the effective blockage of the passage, resulting in an increased aerodynamic loss and a reduced stall margin. The strong interaction between the passage shock and the blade boundary layer increases the peak aerodynamic loss by about one percent.


1997 ◽  
Vol 119 (1) ◽  
pp. 122-128 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver

An experimental investigation concerning tip flow field unsteadiness was performed for a high-performance, state-of-the-art transonic compressor rotor. Casing-mounted high frequency response pressure transducers were used to indicate both the ensemble averaged and time varying flow structure present in the tip region of the rotor at four different operating points at design speed. The ensemble averaged information revealed the shock structure as it evolved from a dual shock system at open throttle to an attached shock at peak efficiency to a detached orientation at near stall. Steady three-dimensional Navier Stokes analysis reveals the dominant flow structures in the tip region in support of the ensemble averaged measurements. A tip leakage vortex is evident at all operating points as regions of low static pressure and appears in the same location as the vortex found in the numerical solution. An unsteadiness parameter was calculated to quantify the unsteadiness in the tip cascade plane. In general, regions of peak unsteadiness appear near shocks and in the area interpreted as the shock-tip leakage vortex interaction. Local peaks of unsteadiness appear in mid-passage downstream of the shock-vortex interaction. Flow field features not evident in the ensemble averaged data are examined via a Navier-Stokes solution obtained at the near stall operating point.


1993 ◽  
Vol 115 (2) ◽  
pp. 283-295 ◽  
Author(s):  
W. N. Dawes

This paper describes recent developments to a three-dimensional, unstructured mesh, solution-adaptive Navier–Stokes solver. By adopting a simple, pragmatic but systematic approach to mesh generation, the range of simulations that can be attempted is extended toward arbitrary geometries. The combined benefits of the approach result in a powerful analytical ability. Solutions for a wide range of flows are presented, including a transonic compressor rotor, a centrifugal impeller, a steam turbine nozzle guide vane with casing extraction belt, the internal coolant passage of a radial inflow turbine, and a turbine disk cavity flow.


Author(s):  
Chan-Sol Ahn ◽  
Kwang-Yong Kim

Design optimization of a transonic compressor rotor (NASA rotor 37) using the response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. The Baldwin-Lomax turbulence model was used in the flow analysis. Three design variables were selected to optimize the stacking line of the blade. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved. It was found that the optimization process provides reliable design of a turbomachinery blade with reasonable computing time.


Sign in / Sign up

Export Citation Format

Share Document