scholarly journals Experience of designing a low-pressing turbocharger compressor using the modern version of a Universal modelling method

2020 ◽  
Vol 178 ◽  
pp. 01013
Author(s):  
Yuri Galerkin ◽  
Aleksandr Drozdov ◽  
Sergey Sibiriakov

The paper presents the joint experience of the NPO “Turbotekhnika” and the R&D Laboratory “Gas Dynamics of Turbomachines” of SPbPU for designing a centrifugal compressor operating at pressure ratio 1.61 and a mass flow rate of 0.62 kg/s. The design was executed using the Universal modelling method and the inviscid quasi-three-dimensional calculation program 3DM.023. At the first step, by the preliminary design program, the stage dimensions were determined. The expected gas-dynamic characteristics are calculated. At the final design step, stator elements were offered by NPO “Turbotekhnika” and the configuration of the impeller blades was optimized based on the non-viscous quasi-three-dimensional calculations. NPO “Turbotekhnika” designed, manufactured and tested the 140E compressor at blade velocities 150, 200, 250 and 300 m/s. A comparison and analysis of experimental and calculated characteristics is presented. The design pressure ratio was calculated almost exactly for the design flow rate at a blade velocity of 300 m/s. The expected efficiency was confirmed. The mathematical model slightly overestimates the efficiency and the pressure ratio for the off-design flow rates.

1996 ◽  
Author(s):  
Steven L. Puterbaugh ◽  
William W. Copenhaver ◽  
Chunill Hah ◽  
Arthur J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier-Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model under-predicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor is also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/sec/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip sped was 457.2 m/sec (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


1997 ◽  
Vol 119 (3) ◽  
pp. 452-459 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver ◽  
C. Hah ◽  
A. J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier–Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model underpredicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor are also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/s/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip speed was 457.2 m/s (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


1987 ◽  
Vol 109 (3) ◽  
pp. 388-397 ◽  
Author(s):  
A. J. Wennerstrom

Between 1970 and 1974, ten variants of a supersonic axial compressor stage were designed and tested. These included two rotor configurations, three rotor tip clearances, addition of boundary-layer control consisting of vortex generators on both the outer casing and the rotor, and the introduction of slots in the stator vanes. Design performance objectives were a stage total pressure ratio of 3.0 with an isentropic efficiency of 0.82 at a tip speed of 1600 ft/s (488 m/s). The first configuration passed only 70 percent of design flow at design speed, achieving a stage pressure ratio of 2.25 at a peak stage isentropic efficiency of 0.61. The rotor was grossly separated. The tenth variant passed 91.4 percent of design flow at design speed, producing a stage pressure ratio of 3.03 with an isentropic efficiency of 0.75. The rotor achieved a pressure ratio of 3.59 at an efficiency of 0.87 under the same conditions. Major conclusions were that design tools available today would undoubtedly permit the original goals to be met or exceeded. However, the application for such a design is currently questionable because efficiency goals considered acceptable for most current programs have risen considerably from the level considered acceptable at the inception of this effort. Splitter vanes placed in the rotor permitted very high diffusion levels to be achieved without stalling. However, viscous effects causing three-dimensional flows violating the assumption of flow confined to concentric stream tubes were so strong that a geometry optimization does not appear practical without a three-dimensional, viscous analysis. Passive boundary-layer control in the form of vortex generators and slots does appear to offer some benefit under certain circumstances.


Author(s):  
Chuhua Zhang ◽  
Yongmiao Miao ◽  
Chuangang Gu

The three-dimensional turbulent flow fields in a shrouded fan impeller with backswept discharge at three operating flow rates are numerically calculated with an unstructured grid method recently developed by the authors. Reynolds-averaged Navier-Stokes (N-S) equations and k-ε equations are solved through finite volume method with pressure correction algorithm. Numerical results are presented for detailed main and secondary flow velocity. The agreements of radial velocity component at different sections at design flow rate between computations and measurements are generally good. It can be observed that different flow rates have distinctive effects on flow patterns. At design flow rate, the flow is behaved as attached flow pattern and has a relatively smooth distribution for the main flow velocity. Above the design flow rate, a sudden drop and non-smooth distribution for the main flow velocity appear at the pressure-hub corner near the impeller inlet, however, the distribution of main flow velocity becomes smooth gradually downstream. Under the design flow rate, the jet-wake structure appears obviously within the impeller passage.


Author(s):  
Seoung-Jin Seo ◽  
Kwang-Yong Kim

This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-ε turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.


1999 ◽  
Vol 121 (1) ◽  
pp. 113-118 ◽  
Author(s):  
H. Tamaki ◽  
H. Nakao ◽  
M. Saito

The centrifugal compressor for a marine use turbocharger with its design pressure ratio of 3.2 was tested with a vaneless diffuser and various vaned diffusers. Vaned diffusers were chosen to cover impeller operating range as broad as possible. The analysis of the static pressure ratio in the impeller and the diffusing system, consisting of the diffuser and scroll, showed that there were four possible combinations of characteristics of impeller pressure ratio and diffusing system pressure ratio, The flow rate, QP, where the impeller achieved maximum static pressure ratio, was surge flow rate of the centrifugal compressor determined by the critical flow rate. In order to operate the compressor at a rate lower than QP, the diffusing system, whose pressure recovery factor was steep negative slope near QP, was needed. When the diffuser throat area was less than a certain value, the compressor efficiency deteriorated; however, the compressor stage pressure ratio was almost constant. In this study, by reducing the diffuser throat area, the compressor could be operated at a flow rate less than 40 percent of its design flow rate. Analysis of the pressure ratio in the impeller and diffusing systems at design and off-design speeds showed that the irregularities in surge line occurred when the component that controlled the negative slope on the compressor stage pressure ratio changed.


2013 ◽  
Vol 675 ◽  
pp. 103-106
Author(s):  
Gui Hua Zhu ◽  
Tuan Hui Qiu ◽  
Min Xie

With the ANSYS Workbench software,the 3D fluid model of the impeller for the centrifugal compressor is set up,whose design flow is 3.2kg/s,rotating speed is 32473r/min,pressure ratio is 3.8,and then with the method of CFD,the k-ε two equations model is selected as the turbulence model,in the condition of design speed,the fluid region of the impeller is simulated under eight different flow rate,the aerodynamic load of the impeller blade and its distribution is acquired under different flow rate,the results showed that the location of the largest aerodynamic load is in the blade that near the outlet of impeller,under the design flow rate condition,the largest aerodynamic load is 0.1969MPa,the aerodynamic load increases with the flow rate decreases.


Author(s):  
Jae Ho Choi ◽  
Ok Suck Sung ◽  
Seung-Bae Chen ◽  
Jin Shik Lim

An aerodynamic design, flow analysis and performance test of a pressure ratio 4:1 centrifugal compressor are presented in this paper. The compressor is made up of a centrifugal impeller, a two-stage diffuser consisted of radial and axial types. The impeller has a 45 degree backswept angle and the design running tip clearance is 5% of impeller exit height. Two types of diffusers are designed for this compressor. Three-dimensional numerical analysis is performed to analyze the flows in the impeller, diffuser and deswirler considering the impeller tip clearance. A test module and rig facilities for the compressor stage performance test are designed and fabricated. The overall compressor stage performances as well as the static pressure fields on the impeller and diffuser are measured. Two diffusers of wedge and airfoil types are tested with an impeller. The calculation and test results show the airfoil diffuser has the better aerodynamic characteristics than those of wedge diffuser in the studied models.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 526
Author(s):  
Mohamed Murshid Shamsuddeen ◽  
Sang-Bum Ma ◽  
Sung Kim ◽  
Ji-Hoon Yoon ◽  
Kwang-Hee Lee ◽  
...  

A multistage centrifugal pump was developed for high head and high flow rate applications. A double-suction impeller and a twin-volute were installed at the first stage followed by an impeller, diffuser and return vanes for the next four stages. An initial design feasibility study was conducted using three-dimensional computational fluid dynamics tools to study the performance and the hydraulic losses associated with the design. Substantial losses in head and efficiency were observed at the interface between the first stage volute and the second stage impeller. An inducer-type guide vane (ITGV) was installed at this location to mitigate the losses by reducing the circumferential velocity of the fluid exiting the volute. The ITGV regulated the pre-swirl of the fluid entering the second stage impeller. The pump with and without ITGV is compared at the design flow rate. The pump with ITGV increased the stage head by 63.28% and stage efficiency by 47.17% at the second stage. As a result, the overall performance of the pump increased by 5.78% and 3.94% in head and efficiency, respectively, at the design point. The ITGV has a significant impact on decreasing losses at both design and off-design conditions. An in-depth flow dynamic analysis at the inducer-impeller interface is also presented.


1999 ◽  
Vol 121 (2) ◽  
pp. 177-183 ◽  
Author(s):  
M. Woinowsky-Krieger ◽  
J.-P. Lavoie ◽  
E. P. Vlasic ◽  
S. H. Moustapha

This paper presents results of rig testing of a transonic, single-stage turbine at off-design conditions. Mapping of the 3.4 pressure ratio, 1.9 stage loading turbine ranged from 70 through 120 percent of design speed and 75 to 125 percent of design pressure ratio. Results show expansion efficiency dropping over 4 percent from 100 to 80 percent of design speed at design pressure ratio, while remaining within half a percent from 90 to 110 percent of design pressure ratio at design speed. Efficiency lapse rate from equivalent sea-level to cruise altitude Reynolds numbers at the design point was measured and found to be worth over 1.5 percent. Analyses of test results using a viscous three-dimensional solver showed very good agreement for the efficiency change with speed.


Sign in / Sign up

Export Citation Format

Share Document