The Three-Dimensional Aerodynamic Design and Test of a Three-Stage Transonic Compressor

Author(s):  
Y. S. Li ◽  
R. G. Wells

This paper presents the aerodynamic design and initial test results from a three-stage transonic compressor developed by ALSTOM Gas Turbines Ltd. The Advanced Transonic Compressor (ATC) was designed using a design system based on three-dimensional (3D) Navier-Stokes CFD codes in contrast to the more conventional design approach centred around the use of throughflow and blade to blade solvers. The customised 3D multiple-circular-arc (MCA) and controlled-diffusion (CD) airfoils have replaced the double-circular-arc (DCA) profiles used previously. The use of both single row and multistage 3D CFD codes has enabled the potential performance improvements from the application of new blade designs to be predicted and comparisons between conventional and new blades to be made. Rig test results have confirmed that the target design mass flow rate and pressure ratio have been successfully achieved in the first build with a design point efficiency higher than that possible from the conventional design. Tests have demonstrated that the compressor has the required surge margin at design and off design speeds to ensure satisfactory operation when transferred to the multistage compressor environment.

1996 ◽  
Author(s):  
Steven L. Puterbaugh ◽  
William W. Copenhaver ◽  
Chunill Hah ◽  
Arthur J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier-Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model under-predicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor is also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/sec/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip sped was 457.2 m/sec (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


1997 ◽  
Vol 119 (3) ◽  
pp. 452-459 ◽  
Author(s):  
S. L. Puterbaugh ◽  
W. W. Copenhaver ◽  
C. Hah ◽  
A. J. Wennerstrom

An analysis of the effectiveness of a three-dimensional shock loss model used in transonic compressor rotor design is presented. The model was used during the design of an aft-swept, transonic compressor rotor. The demonstrated performance of the swept rotor, in combination with numerical results, is used to determine the strengths and weaknesses of the model. The numerical results were obtained from a fully three-dimensional Navier–Stokes solver. The shock loss model was developed to account for the benefit gained with three-dimensional shock sweep. Comparisons with the experimental and numerical results demonstrated that shock loss reductions predicted by the model due to the swept shock induced by the swept leading edge of the rotor were exceeded. However, near the tip the loss model underpredicts the loss because the shock geometry assumed by the model remains swept in this region while the numerical results show a more normal shock orientation. The design methods and the demonstrated performance of the swept rotor are also presented. Comparisons are made between the design intent and measured performance parameters. The aft-swept rotor was designed using an inviscid axisymmetric streamline curvature design system utilizing arbitrary airfoil blading geometry. The design goal specific flow rate was 214.7 kg/s/m2 (43.98 lbm/sec/ft2), the design pressure ratio goal was 2.042, and the predicted design point efficiency was 94.0. The rotor tip speed was 457.2 m/s (1500 ft/sec). The design flow rate was achieved while the pressure ratio fell short by 0.07. Efficiency was 3 points below prediction, though at a very high 91 percent. At this operating condition the stall margin was 11 percent.


Author(s):  
S. V. Subramanian ◽  
R. Bozzola ◽  
Louis A. Povinelli

The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.


1970 ◽  
Vol 185 (1) ◽  
pp. 407-424 ◽  
Author(s):  
H. R. M. Craig ◽  
H. J. A. Cox

A comprehensive method of estimating the performance of axial flow steam and gas turbines is presented, based on analysis of linear cascade tests on blading, on a number of turbine test results, and on air tests of model casings. The validity of the use of such data is briefly considered. Data are presented to allow performance estimation of actual machines over a wide range of Reynolds number, Mach number, aspect ratio and other relevant variables. The use of the method in connection with three-dimensional methods of flow estimation is considered, and data presented showing encouraging agreement between estimates and available test results. Finally ‘carpets’ are presented showing the trends in efficiencies that are attainable in turbines designed over a wide range of loading, axial velocity/blade speed ratio, Reynolds number and aspect ratio.


Author(s):  
Guy Phuong ◽  
Sylvester Abanteriba ◽  
Paul Haley ◽  
Philippe Guillerot

Volutes are widely used in centrifugal compressors for industrial processes, refrigeration systems, small gas turbines and gas pipelines. However, large costs associated with the volute design and analysis process can be reduced with the introduction of a software design system that ties together both geometry creation and mesh generation having the ultimate intent of improving stage efficiency. Computational Fluid Dynamics (CFD) has become an integral part of engineering design. High quality grids need to be produced as part of the analysis process. Engineers of different expertise may be required to determine volute design constraints and parameters, produce the geometry, and generate a high quality grid. The current research aims to develop and demonstrate a volute design tool that allows design engineers the ability to easily and efficiently generate volute geometry and automate grid generation by means of geometrical constraints using functional relationships. The approach was outlined in [1]. Visualization of volute geometry can be in two-dimensional (2D) or three-dimensional (3D) modes. Control of the diffuser upstream of the scroll, the scroll itself and the conic are totally integrated in the design system. The user can position the conic anywhere in space and control the shape of the conic centroid curve, therefore having complete control over the development of the tongue region. The program will output data for automated grid generation where user can control resulting grid properties. Once the desired design configuration has been determined, the users can output the geometry surfaces and wireframes to a Computer Aided Design (CAD) package for production. Every little detail is also incorporated into the software from volute draft angle, discharge conic centroid shape, to cross section fillet radii. Upon entering all the required constraints and parameters of the volute, the geometry is created in seconds. Grids can be generated in minutes accommodating geometrical changes thus reducing the bottlenecks associated with geometry/grid generation for CFD applications.


Author(s):  
Christian Kunkel ◽  
Jan Werner ◽  
Daniel Franke ◽  
Heinz-Peter Schiffer ◽  
Fabian Wartzek ◽  
...  

Abstract With the well-known Transonic Compressor Darmstadt (TCD) in operation since 1994, profound knowledge in designing and operating a sophisticated test-rig is available at the Institute of Gas Turbines and Aerospace Propulsion of TU Darmstadt. During this period, TCD has been subject to a vast number of redesigns within different measurement campaigns (see [1], [2], [3], [4], [5], [6], [7], [8]). To expand the capabilities and ensure a sustainable process of compressor research, a new test facility was designed and built by the institute. The new test rig Transonic Compressor Darmstadt 2 (TCD2) features increased power for higher pressure ratios and higher mass-flow, a state of the art control system, increased flexibility towards different compressor geometries and modern data acquisition hardware and software. Following the successful commissioning of the test-rig in March 2018, a first measurement campaign has been conducted. Early test results regarding aerodynamic performance and aeroelastic effects of the test compressor are presented together with a detailed overview of test-rig infrastructure and control systems as well as the test compressor and the measurement hardware.


Author(s):  
Yiming Zhong ◽  
WuLi Chu ◽  
HaoGuang Zhang

Abstract Compared to the traditional casing treatment, the self-recirculating casing treatment (SCT) can improve or not decrease the compressor efficiency while achieving the stall margin improvement. For the bleed port, the main design indicator is to reduce the flow loss caused by suction, while providing sufficient jet flow and jet pressure to the injector. In order to gain a better study of the bleed port stabilization mechanisms, the bleed configuration was parameterized with the bleed port inlet width and the bleed port axial position. Five kinds of recirculating casing treatments were applied to a 1.5-stage transonic axial compressor with the method of three-dimensional unsteady numerical simulation. Fifteen identical self-recirculating devices are uniformly mounted around the annulus. The numerical results show that the SCT can improve compressor total pressure ratio and stability, shift the stall margin towards lower mass flows. Furthermore, it has no impact on compressor efficiency. The optimal case presents that stability margin is improved by 6.7% employing 3.1% of the annulus mass flow. Expanding bleed port inlet width to an intermediate level can further enhance compressor stability, but excessive bleed port inlet width will reduce the stabilization effect. The optimal bleed port position is located in the blocked area of the low energy group at the top of the rotor. In the case of solid casing, stall inception was the tip blockage, which was mainly triggered by the interaction of the tip leakage vortex and passage shock. From radial distribution, the casing treatment predominantly affects the above 70% span. The reduction of tip reflux region by suction effect is the main reason for the extension of stable operation range. The SCT also has an obvious stability improvement in tip blockage stall, while delaying the occurrence of compressor stall.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Niklas Neupert ◽  
Janneck Christoph Harbeck ◽  
Franz Joos

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines. Despite the positive thermodynamic effect on the cycle, droplets entering the compressor increase the risk of water droplet erosion and deposition of water on the blades leading to an increase of required torque and profile loss. Due to this, detailed information about the structure and the amount of water on the surface is key for compressor performance. Experiments were conducted with a droplet laden flow in a transonic compressor cascade focusing on the film formed by the deposited water. Two approaches were taken. In the first approach, the film thickness on the blade was directly measured using white light interferometry. Due to significant distortion of the flow caused by the measurement system, a transfer of the measured film thickness to the undisturbed case is not possible. Therefore, a film model is adapted to describe the film flow in terms of height averaged film parameters. In the second approach, experiments were conducted in an undisturbed cascade setup and the water film pattern was measured using a nonintrusive quantitative image processing tool. Utilizing the measured flow pattern in combination with findings from the literature, the rivulet flow structure is resolved. From continuity of the water flow, a film thickness is derived showing good agreement with the previously calculated results. Using both approaches, a three-dimensional (3D) reconstruction of the water film pattern is created giving first experimental results of the film forming on stationary compressor blades under overspray fogging conditions.


Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Discrete tip injection upstream of the rotor tip is an effective technique to extend stability margin for a compressor system in an aeroengine. The current study investigates the effects of injectors’ circumferential coverage on compressor performance and stability using time-accurate three-dimensional numerical simulations for multi passages in a transonic compressor. The percentage of circumferential coverage for all the six injectors ranges from 6% to 87% for the five investigated configurations. Results indicate that circumferential coverage of tip injection can greatly affect compressor stability and total pressure ratio, but has little influence on adiabatic efficiency. The improvement of compressor total pressure ratio is linearly related with the increasing circumferential coverage. The unsteady flow fields show that there exists a non-ignorable time lag of the injection effects between the passage inlet and outlet, and blade tip loading will not decline until the injected flow reaches the passage outlet. Stability improves sharply with the increasing circumferential coverage when the coverage is less than 27%, but increases flatly for the rest. It is proven that the injection efficiency which is a measurement of averaged blockage decrement in the injected region is an effective guideline to predict the stability improvement.


Sign in / Sign up

Export Citation Format

Share Document