scholarly journals Inverse Design of Turbomachinery Blading for Arbitrary Blade Thickness in Three-Dimensional Transonic Flow

Author(s):  
Y. L. Yang

A three-dimensional inverse design of turbomachinery blading for arbitrary blade thickness was obtained by using two periodic bound vortex sheets representing the pressure side and suction side of a blade row. The mean swirl distribution and blade tangential thickness distribution are specified in the present inverse design method. The prescribed mean swirl distribution is split into two fractions to form the strength of two bound vortex sheets. However, the designed results are uniquely determined by the specification of the mean swirl distribution and blade tangential thickness distribution, while splitting the mean swirl distribution into any two fractions for two bound vortex sheets is irrelevant. The resulting velocity field is composed of three parts: the first is sawtooth integrated from two bound vortex sheets; the second is axisymmetrical to provide an irrotational flow outside the two bound vortex sheets; and the last is potential to ensure mass conservation. The blade shape is determined from either the pressure side or suction side boundary condition, without a difference. Numerical results of a subsonic stator blade row designed by the present inverse design have been compared with three-dimensional Euler solutions and show a good agreement. For transonic calculation, a special form of retarding density was implemented to avoid transformation of the coordinate. However, due to the nonisentropic and rotational nature of shock wave, the present inverse solution does not give a correct answer after shocks. Coupling the entropy change and generation of vorticity after shocks with the present analytical formulation is recommended in the future work.

Author(s):  
Hiroyoshi Watanabe ◽  
Hidenobu Okamoto ◽  
Shijie Guo ◽  
Akira Goto ◽  
Mehrdad Zangeneh

In this second report, a new aerodynamic design is presented for a radial turbine stage of a microturbine engine. To optimize three-dimensional (3-D) flows, an inverse design method, in which 3-D blade geometry is numerically obtained for specified blade loading distribution, has been applied together with numerical assessment using CFD (Computational Fluid Dynamics) and FEM (Finite Element Method). The runner blade profile along the hub surface was modified to attain nearly radially arranged blade elements especially at the exducer part of the radial turbine in order to achieve required structural strength. Also the blade thickness distribution was optimized to avoid vibration resonance and to meet creep strength requirements. The blade profile along the shroud surface was optimized via 3-D inverse design and CFD. CFD predicted aerodynamic performance of the modified turbine runner was confirmed to be similar to that of the fully 3-D blade shape, while maintaining structural reliability. The turbine nozzle also has been re-designed by using the inverse design method, with stage performance improvements confirmed by stage calculations using CFD.


Author(s):  
B. Qian ◽  
D. Z. Wu

The vibration performance of centrifugal impellers is of great importance for pumps in some application areas such as automobiles and ships. Apart from mechanical excitations for instance, unbalanced rotor and misalignment, attentions should be concentrated on the hydraulic excitations. The complex internal secondary flow in the centrifugal impeller brings degradation on both hydraulic and vibration performances. On the purpose of repressing the internal secondary flow and alleviating vibration, an attempt of optimization by controlling the thickness distribution of centrifugal impeller blade is given. The vibration performances of the impellers are investigated numerically and experimentally. Meanwhile, further study on the mechanism of the influence of the thickness distribution optimization on vibration is conducted. There is a relative velocity gradient from suction side (SS) to pressure side (PS) due to the Coriolis force, which causes non-uniformity of energy distribution. By means of thickness distribution optimization, the impeller blade angle on the PS and SS along the blade-aligned (BA) streamwise location is respectively modified and therefore the flow field can be improved.


Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the altitude test-facility aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multi-stage CFD predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positve incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions vane 1 passage vortex fluid is involved in the midspan passage interaction leading to a more distorted three-dimensional flow field.


1990 ◽  
Vol 112 (3) ◽  
pp. 346-354 ◽  
Author(s):  
J. E. Borges

There are surprisingly few inverse methods described in the literature that are truly three dimensional. Here, one such method is presented. This technique uses as input a prescribed distribution of the mean swirl, i.e., radius times mean tangential velocity, given throughout the meridional section of the machine. In the present implementation the flow is considered inviscid and incompressible and is assumed irrotational at the inlet to the blade row. In order to evaluate the velocity field inside the turbomachine, the blades (supposed infinitely thin) are replaced by sheets of vorticity, whose strength is related to the specified mean swirl. Some advice on the choice of a suitable mean swirl distribution is given. In order to assess the usefulness of the present procedure, it was decided to apply it to the design of an impeller for a low-speed radial-inflow turbine. The results of the tests are described in the second part of this paper.


Author(s):  
Davis W. Hoffman ◽  
Laura Villafañe ◽  
Christopher J. Elkins ◽  
John K. Eaton

Abstract Three-dimensional, three-component time-averaged velocity fields have been measured within a low-speed centrifugal fan with forward curved blades. The model investigated is representative of fans commonly used in automotive HVAC applications. The flow was analyzed at two Reynolds numbers for the same ratio of blade rotational speed to outlet flow velocity. The flow patterns inside the volute were found to have weak sensitivity to Reynolds number. A pair of counter-rotating vortices evolve circumferentially within the volute with positive and negative helicity in the upper and lower regions, respectively. Measurements have been further extended to capture phase-resolved flow features by synchronizing the data acquisition with the blade passing frequency. The mean flow field through each blade passage is presented including the jet-wake structure extending from the blade and the separation zone on the suction side of the blade leading edge.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines, a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the Altitude Test Facility (ATF) aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multistage computational fluid dynamics (CFD) predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positive incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side (SS) phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions, vane 1 passage vortex fluid is involved in the midspan passage interaction, leading to a more distorted three-dimensional (3D) flow field.


1989 ◽  
Author(s):  
João Eduardo Borges

There are surprisingly few inverse methods described in the literature that are truly three-dimensional. Here, one such method is presented. This technique uses as input a prescribed distribution of the mean swirl, i.e., radius times mean tangential velocity, given throughout the meridional section of the machine. In the present implementation the flow is considered inviscid and incompressible and is assumed irrotational at inlet to the blade row. In order to evaluate the velocity field inside the turbomachine, the blades (supposed infinitely thin) are replaced by sheets of vorticity whose strength is related to the specified mean swirl. Some advice on the choice of a suitable mean swirl distribution is given. In order to assess the usefulness of the present procedure, it was decided to apply it to the design of an impeller of a low-speed radial-inflow turbine. The results of the tests are described in the second part of this paper.


2000 ◽  
Vol 122 (4) ◽  
pp. 593-603 ◽  
Author(s):  
Allan G. van de Wall ◽  
Jaikrishnan R. Kadambi ◽  
John J. Adamczyk

The unsteady process resulting from the interaction of upstream vortical structures with a downstream blade row in turbomachines can have a significant impact on the machine efficiency. The upstream vortical structures or disturbances are transported by the mean flow of the downstream blade row, redistributing the time-average unsteady kinetic energy (K) associated with the incoming disturbance. A transport model was developed to take this process into account in the computation of time-averaged multistage turbomachinery flows. The model was applied to compressor and turbine geometry. For compressors, the K associated with upstream two-dimensional wakes and three-dimensional tip clearance flows is reduced as a result of their interaction with a downstream blade row. This reduction results from inviscid effects as well as viscous effects and reduces the loss associated with the upstream disturbance. Any disturbance passing through a compressor blade row results in a smaller loss than if the disturbance was mixed-out prior to entering the blade row. For turbines, the K associated with upstream two-dimensional wakes and three-dimensional tip clearance flows are significantly amplified by inviscid effects as a result of the interaction with a downstream turbine blade row. Viscous effects act to reduce the amplification of the K by inviscid effects but result in a substantial loss. Two-dimensional wakes and three-dimensional tip clearance flows passing through a turbine blade row result in a larger loss than if these disturbances were mixed-out prior to entering the blade row. [S0889-504X(00)01804-3]


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Bo Qian ◽  
Peng Wu ◽  
Bin Huang ◽  
Kai Zhang ◽  
Shiyang Li ◽  
...  

Abstract The vibration performance of centrifugal impellers is important for pumps and hydraulic excitation is a key source of vibration. The complex internal secondary flow in the centrifugal impeller brings degradation on vibration performances. An attempt of optimization by controlling the thickness distribution of centrifugal impeller blade is given to repress the internal secondary flow and alleviating vibration. The usual method of modifying an impeller on vibration performance is applying splitter blades. In this study, an ordinarily designed impeller is improved by the optimization attempt and the optimized impeller (OPT) is compared with the prototype impeller (PRT) with traditional splitter blades. The vibration performances of the impellers, the PRT, the ordinary impeller (ODN), and the OPT, are investigated numerically and experimentally. Meanwhile, further study on the influence of the thickness distribution optimization on vibration is conducted. There is a relative velocity gradient from suction side (SS) to pressure side (PS) in impeller ODN, causing nonuniformity of energy distribution. By means of thickness distribution optimization, the impeller blade angle on the PS and SS along the blade-aligned streamwise location is, respectively, modified and therefore the flow field can be reordered. The energy transfer in impeller is also redistributed after the modification of blade thickness distribution. What is more, experimental research upon impeller PRT and impeller OPT is also complemented to support the computational fluid dynamics (CFD) results. The experimental results show that the hydraulic performance of the impellers basically agree with the CFD results and the vibration data also proves a better vibration performance of the OPT.


Sign in / Sign up

Export Citation Format

Share Document