scholarly journals Gas Turbine Development in Sweden After 1945: A Historical Review

Author(s):  
Kjell T. E. Thoren

The gas turbine development history of Sweden is exciting. By international comparison Sweden and its gas turbine manufacturers are small but can nevertheless claim periods with the worlds highest output, or highest efficiency large industrial gas turbine respectively. Sweden has always created its own military aircraft and fitting, high performance engines are developed in Sweden in license cooperation with large international manufacturers. The Swedish Air Force ranked number four in the world during the 60s. Pioneering contributions were also made with small gas turbines, such as high speed turbogenerators in hybrid propulsion systems for cars and trucks. Professionals know that gas turbine development success does not come easy. A lot of setbacks have to be mastered. The size of the crew is not always significant in the process.

Author(s):  
Morgan L. Hendry

Synchro-Self-Shifting (SSS) Overrunning Clutches are used in a myriad of propulsion system configurations for naval and commercial vessels powered by gas turbines and/or combined gas turbine and cruise engines worldwide. Of these, much has been written about high power gas turbine propulsion clutches for large naval vessels (frigates, destroyers, cruisers, etc.), whereas less has been published about the application and experience of the propulsion machinery with Synchro-Self-Shifting Clutches for hydrofoils, hovercraft, fast patrol boats, fast ferries, yachts, etc. Space, weight, and high-speed constraints can be different for high speed gas turbine propulsion systems used in these smaller types of vessels, and can therefore provide gearing challenges, including system design challenges for these clutches. A comparison between Synchro-Self-Shifting overrunning clutches and other types of freewheels will be given discussing the advantages and disadvantages of each, particularly as they relate to high speed gas turbine marine propulsion applications. Lastly, this paper will give some history of a number of high speed gas turbine driven marine propulsion applications with clutches from the early 1960’s until the present, describe various gearing arrangements that were used in particular vessels, articulate where these clutches are incorporated, and discuss the application experience of these clutch installations.


Author(s):  
Nanahisa Sugiyama

This paper describes a real-time or faster-than-real-time simulation of gas turbine engines, using an ultra high speed, multi-processor digital computer, designated the AD100. It is shown that the frame time is reduced significantly without any loss of fidelity of a simulation. The simulation program is aimed at a high degree of flexibility to allow changes in engine configuration. This makes it possible to simulate various types of gas turbine engines, including jet engines, gas turbines for vehicles and power plants, in real-time. Some simulation results for an intercooled-reheat type industrial gas turbine are shown.


Author(s):  
Grahame Knowles ◽  
Chris Bingham ◽  
Ron Bickerton

The paper investigates the use of compensating balancing sleeves positioned at the shaft’s end for the balancing of high-speed flexible shafts. The balancing sleeve is a new arrangement that creates a pure balancing moment with virtually zero radial reaction forces. For comparison purposes, experimental results from previous research are used to benchmark performance and to demonstrate the benefits newly proposed topology. The new configuration is commensurate with what is required for the Power Turbine (PT) shaft of a twin shaft industrial gas turbine, with an overhung disc. The study is also aimed at bladed shafts, such as those used in high speed gas turbines/compressors, with a view to improving their volumetric efficiency by reducing the formation of relatively large tip leakage gaps caused by shaft deflection/blade wear of abradable seals. It is shown to be practically possible to separate the two main dynamic balancing functions i.e. the control of bearing reaction loads and shaft deflections, thus allowing for their independent adjustment. This enables the required balancing sleeve moment to be determined and set during low-speed commissioning i.e. before any excessive shaft deflection and resulting seal wear occurs, as is typical when final balancing is undertaken at full operational speed.


Author(s):  
Morgan L. Hendry ◽  
Nicholas Bellamy

Abstract Navies worldwide are increasingly considering and adopting propulsion plants with electric propulsion for cruise and ship silent operation, and gas turbines for boost propulsion for high speed. These propulsion plants, often referred to as hybrid propulsion, utilize water jets, controllable pitch propellers, or fixed pitch propellers, and have design and overall configuration to fit into naval ships with various size hulls such as would be the case with corvettes, frigates, destroyers, cruisers, etc. Therefore, size, weight, and space of the propulsion plant is important, but equally important is limiting associated machinery which must be used with a particular hybrid propulsion plant design selected. In addition, propulsion design engineers, in conjunction with naval architects, shipyards and navies, must consider fuel efficiencies, machinery efficiencies, weight of all the associated machinery, placement in the hull, first time cost, and life cycle maintenance with associated cost when selecting the configuration of the propulsion system’s associated machinery. Manning levels are dictated by these parameters and in the end, it must be realized that the purpose of the ship mission can be compromised if reliability is not high and premature failures occur. This paper is a more in depth analysis of hybrid propulsion systems for naval ships of various sizes, and analysis of the associate machinery emphasizing ship weight and space savings, fuel savings, cost savings, mean time between failures and mean time to repair which results in lower manning requirements and increased mission readiness. By the time this paper is published, more than 250 SSS Clutches will be installed in US Navy Arleigh Burke Destroyers, 32 are operating in low speed propeller shafts of British Navy Type 23 ships, 2 in the Japanese Navy’s Asuka Class and 16 in low speed propeller shafts of Royal Korean Navy FFX Batch II frigates. At the time of abstract submission, all three programs referenced above have cumulatively had zero defects attributable to SSS Clutch material, function, design, or quality. While the US Navy are given occasional reminders of why alternative clutch designs remain ineffective, unreliable and remarkedly inefficient, other nations’ vertically tiered supply chains and inexperienced engineers are shielded from similar issues.


Author(s):  
K. H. Kurzak ◽  
H. Reuter

The Koeln Class escort frigates represents the first larger type of vessel built for the German Federal Navy. The design work dates back as far as 1955–1956. In view of the planned operational use of the ships an extremely light construction of the propulsion machinery with a long operating range was required. Furthermore, combat safety required an appropriate space structure of the propulsion machinery. For this purpose various propulsion systems were examined at the time, e.g., steam-turbine and diesel-engine propulsion, and a comparison was made between direct and electrical output transmissions. The advanced development of gas-turbine technique in connection with the introduction of high pressure-charged, high-speed diesel engines together with the development of high-performance, variable-pitch propellers led to a design which, compared with other types of propulsion, proved to be extremely advantageous not only with regard to the standard displacement of the vessel but, because of the low fuel consumption, also to the displacement of the fully equipped ship (1, 2).


Author(s):  
A. Lindholm ◽  
D. Lo¨rstad ◽  
P. Magnusson ◽  
P. Andersson ◽  
T. Larsson

This paper deals with an experimental investigation of dry low emission (DLE) burners for industrial gas turbines. Changes in the fuel profile, pressure drop over the burner and external pilot flame stabilization have been investigated regarding combustion stability and emissions. This has been achieved by parallel experimental work in a water rig and a newly commissioned atmospheric combustion test rig. Some verifying tests in a high pressure rig were also conducted. The work in the water rig has been directed towards evaluating different fuel profiles at the burner exit due to changes in the fuel outlet geometry. Variations of the fuel outlet geometry were achieved by altering the effective area of the hardware configuration of the fuel outlet ports or by moving or adding fuel outlet ports. A few of the tested configurations in the water rig was chosen for further evaluation by atmospheric combustion tests with respect to combustion stability and emissions. A more general study on combustion stability and emissions was also performed for different burners, burner configurations and variations in pressure drop over the burner. The pressure drop over the burner in the test corresponds very well to the pressure drop measured over a single burner in an annular combustion chamber of an industrial gas turbine at different loads. The combustion was monitored by a high speed video camera equipped with an image intensifier. Simultaneously the dynamic pressure was measured by a piezoelectric pressure transducer, making it possible to know when each image was taken relative to the pressure. Results for different hardware configurations will be shown considering the frequency response from the flame and the dynamic pressure as well as the characteristic combustion instability close to lean blowout.


Author(s):  
Chris Waldhelm ◽  
Jim Bertsch

The drive to produce lighter, faster vessels has been increasing the market interest in marine gas turbine propulsion systems. Classification Rules for propulsion systems in vessels require certification. Classification Rules cover many aspects of design philosophies. For new, high speed and light craft designs, gas turbine power is being optimized to economically blend higher vessel speeds, lower operating costs, and improved payloads. As part of this process, a concurrent design effort involving class societies is highly recommended to speed certification and increase the project’s experience pool. Classification Societies, as independent third parties, issue standards (rules) for safe design, construction, and operation of ships. Certification is used to document compliance with the standards or rules. The certification process is usually based on design reviews and witnessing of manufacturing and testing. Recently, a project at Solar Turbines Incorporated required a pair of 5 MW marine gas turbines propulsion units to be certified by Det Norske Veritas Classification AS. The gas turbines drive waterjets for a 45 meter, 332 passenger, 47 knot vessel designed and manufactured by FBM Marine Limited in the United Kingdom.


2019 ◽  
Author(s):  
A Fatsis ◽  
A S N Al Balushi

The propulsion demands of high speed naval vessels often rely on gas turbines fitted in small engine rooms, producing significant amounts of power achieving thus high performance requirements. Gas turbines can be used either to provide purely mechanical propulsion, or alternatively to generate electricity, which is subsequently used by electric drives to propel the ship. However, the thermal efficiencies of gas turbines are lower than those of Diesel engines of similar power, in addition to the fact that all gas turbines are less efficient as the ambient temperature rises, particularly for aero-derivative engines. In the context of improving the performance of existing marine gas turbines with minimum modifications to their baseline configuration, this article is proposing engine’s performance enhancement by integrating a pressure wave supercharger (or wave rotor), while keeping the compressor, combustion chamber and turbine entry temperature of the baseline engine unchanged. Thermodynamic cycle analysis for two-shaft gas turbine engines configurations with and without heat exchanger to recuperate the waste heat from the exhaust gases, typical for marine propulsion is performed for the baseline engines, as well as for the topped with four-port wave rotor engines, at design point conditions and their performances are compared accordingly. Important benefits are obtained for four-port wave rotor-topped engines in comparison to the self-standing baseline engines for the whole range of engine’s operation. It is found that the higher the turbine inlet temperature is, the more the benefit gain of the wave rotor topped engine is attained in terms of efficiency and specific power. It is also concluded that the integration of wave rotor particularly favours engines operating at low compressor pressure ratios and high turbine inlet temperatures. The effect of variation of the most important parameters on performance of the topped engine is investigated. It is concluded that wave rotor topping of marine gas turbines can lead to fuel savings and power increase.


Author(s):  
Hans Liwång ◽  
Lars Pejlert ◽  
Steve Miller ◽  
Jan-Erik Gustavsson

Over the years, the word stealth has been used more and more when discussing design and operational characteristics in military applications. New and more challenging techniques are constantly being applied to minimize signatures and thus hinder or delay detection and identification. The Visby Class Corvette is a multipurpose combat ship with 600 tons displacement. The hull is a sandwich construction of a PVC core with carbon fiber/vinyl laminate. The propulsion system consists of two identical CODOG machinery systems, each driving a KaMeWa 125 size Water Jet Unit. The Ship has special requirements for all signatures, i.e. Radar-, Hydro acoustics-, IR- and Magnetic Signature. The High Speed Machinery is twin Honeywell TF50A Gas Turbines, cantilever mounted side by side on the Main Reduction Gearbox housing. The Main Reduction Gearbox is a dual input high performance marine Gearbox designated MA - 107 SBS, designed and manufactured by Cincinnati Gear Co. The Low Speed Machinery is a MTU 16 V 2000 TE90 Diesel Engine connected to the MRG by a power take in shaft. Combustion Air for the Gas Turbines is ducted from the shipside Air Inlet Screen (radar screen) via 3-stage separating filters. The Exhausts from the twin Gas Turbines are combined into one Exhaust Pipe and ducted to the ship transom above the Water Jet stream. Very little can be changed in the Gas Turbine, but high quality such as well balanced rotating part contributes to reduce the signatures. However, the main work has to be accomplished by the building shipyard in cooperation with the Gas Turbine manufacturer. The Main Reduction Gearbox is more available for changes to reduce signatures, but even for the Gearbox the building shipyard has to take design and installation measures. The HSM installation consist mainly of the Gas Turbine Engine, the Main Reduction Gear, Water Jets Unit and surrounding equipment such as main shaft, bearings and so on. The emphasis in this paper is on the GT, MRG and their effect on some of the more well known signatures i.e. RCS, IR, Hydro acoustics and Magnetic. Also some design measures are discussed.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document