scholarly journals Gas Turbine Performance Enhancement for Naval Ship Propulsion using Wave Rotors

Author(s):  
A Fatsis ◽  
A S N Al Balushi

The propulsion demands of high speed naval vessels often rely on gas turbines fitted in small engine rooms, producing significant amounts of power achieving thus high performance requirements. Gas turbines can be used either to provide purely mechanical propulsion, or alternatively to generate electricity, which is subsequently used by electric drives to propel the ship. However, the thermal efficiencies of gas turbines are lower than those of Diesel engines of similar power, in addition to the fact that all gas turbines are less efficient as the ambient temperature rises, particularly for aero-derivative engines. In the context of improving the performance of existing marine gas turbines with minimum modifications to their baseline configuration, this article is proposing engine’s performance enhancement by integrating a pressure wave supercharger (or wave rotor), while keeping the compressor, combustion chamber and turbine entry temperature of the baseline engine unchanged. Thermodynamic cycle analysis for two-shaft gas turbine engines configurations with and without heat exchanger to recuperate the waste heat from the exhaust gases, typical for marine propulsion is performed for the baseline engines, as well as for the topped with four-port wave rotor engines, at design point conditions and their performances are compared accordingly. Important benefits are obtained for four-port wave rotor-topped engines in comparison to the self-standing baseline engines for the whole range of engine’s operation. It is found that the higher the turbine inlet temperature is, the more the benefit gain of the wave rotor topped engine is attained in terms of efficiency and specific power. It is also concluded that the integration of wave rotor particularly favours engines operating at low compressor pressure ratios and high turbine inlet temperatures. The effect of variation of the most important parameters on performance of the topped engine is investigated. It is concluded that wave rotor topping of marine gas turbines can lead to fuel savings and power increase.

Author(s):  
Mirko Baratta ◽  
Francesco Cardile ◽  
Daniela Anna Misul ◽  
Nicola Rosafio ◽  
Simone Salvadori ◽  
...  

Abstract The even more stringent limitations set by the European Commission on pollutant emissions are forcing gas turbine manufacturers towards the redesign of the most important components to increase efficiency and specific power. Current trends in gas turbine design include an increased attention to the design of cooling systems and enhanced best practices for the study of components interaction. At the same time, the recent crisis suffered by the oil and gas industry reduced the interest in brand new gas turbines, thus increasing the service market. Therefore, original equipment manufacturers would rather propose the replacement of specific components within the gas turbine plant during its maintenance with compatible elements that are likely to guarantee increased performance and longer residual lifetime at a more desirable nominal working point. In the present activity the cooling system of the TG20 heavy-duty gas turbine has been redesigned to increase the turbine inlet temperature while contemporaneously reducing the total amount of coolant mass-flow. Specifically, the cooling scheme of the rotating blade of the first turbine row has been reviewed at the Department of Energy (DENERG) of Politecnico di Torino in cooperation with EthosEnergy Italia S.p.a.. The paper presents a new design, which, starting from the original solution featuring fifteen smooth pipes, adopts an improved geometry characterized by the presence of turbulators. The activity has been carried out using Computational Fluid Dynamics (CFD) for the coolant/blade interaction and one-dimensional models developed at EthosEnergy for the redistribution of the cooling flows in the cavities. The mutual effects between the coolant fluid and the blade are analyzed using a Conjugate Heat Transfer (CHT) approach with Star-CCM+. The validation of the computational approach has been performed exploiting the experimental data available for the NASA C3X test case. The TG20 rotating blade of the first turbine row has been analyzed considering the two different coolant configurations. The impact of the main flow on the thermal field has initially been included by imposing a temperature field on the blade surface. The latter field has in turn been obtained by means of a separate computation for the solid only. Full CHT simulations has hence been performed, thus quantifying the accuracy of the proposed approach. The obtained results are discussed in terms of thermo-fluid-dynamic effects.


Author(s):  
Donald A. Kolp ◽  
Harold A. Guidotti ◽  
William M. Flye

Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30% increase in power and a 4.5% improvement in heat rate. An elevation increase to 5000 feet (1524 meters) above sea level decreases turbine output 17%; conversely supercharging can increase output more than 20%. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.


1995 ◽  
Vol 117 (3) ◽  
pp. 513-527 ◽  
Author(s):  
D. A. Kolp ◽  
W. M. Flye ◽  
H. A. Guidotti

Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50°F (28°C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5000 ft (1524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.


Author(s):  
Pezhman Akbari ◽  
Norbert Mu¨ller

Results are presented predicting the significant performance enhancement of two small gas turbines (30 kW and 60 kW) by implementing various wave rotor topping cycles. Five different advantageous implementation cases for a four-port wave rotor into given baseline engines are considered. The compressor and turbine pressure ratios, and the turbine inlet temperatures vary in the thermodynamic calculations, according to the anticipated design objectives of the five cases. Advantages and disadvantages are outlined. Comparison between the theoretic performance (expressed by specific cycle work and overall thermal efficiency) of wave-rotor-topped and baseline engines shows a performance enhancement by up to 33%. The results obtained show that almost all the cases studied benefit from the wave-rotor-topping, but the highest gain is obtained for the case in which the topped engine operates with the same turbine inlet temperature and compressor pressure ratio as the baseline engine. General design maps are generated for the small gas turbines, showing the design space and optima for baseline and topped engines.


Author(s):  
A.A. Filimonova ◽  
◽  
N.D. Chichirova ◽  
A.A. Chichirov ◽  
A.A. Batalova ◽  
...  

The article provides an overview of modern high-performance combined-cycle plants and gas turbine plants with waste heat boilers. The forecast for the introduction of gas turbine equipment at TPPs in the world and in Russia is presented. The classification of gas turbines according to the degree of energy efficiency and operational characteristics is given. Waste heat boilers are characterized in terms of design and associated performance and efficiency. To achieve high operating parameters of gas turbine and boiler equipment, it is necessary to use, among other things, modern water treatment equipment. The article discusses modern effective technologies, the leading place among which is occupied by membrane, and especially baromembrane methods of preparing feed water-waste heat boilers. At the same time, the ion exchange technology remains one of the most demanded at TPPs in the Russian Federation.


Author(s):  
Daniel E. Caguiat

The Naval Surface Warfare Center, Carderock Division (NSWCCD) Gas Turbine Emerging Technologies Code 9334 was tasked by NSWCCD Shipboard Energy Office Code 859 to research and evaluate fouling resistant compressor coatings for Rolls Royce Allison 501-K Series gas turbines. The objective of these tests was to investigate the feasibility of reducing the rate of compressor fouling degradation and associated rate of specific fuel consumption (SFC) increase through the application of anti-fouling coatings. Code 9334 conducted a market investigation and selected coatings that best fit the test objective. The coatings selected were Sermalon for compressor stages 1 and 2 and Sermaflow S4000 for the remaining 12 compressor stages. Both coatings are manufactured by Sermatech International, are intended to substantially decrease blade surface roughness, have inert top layers, and contain an anti-corrosive aluminum-ceramic base coat. Sermalon contains a Polytetrafluoroethylene (PTFE) topcoat, a substance similar to Teflon, for added fouling resistance. Tests were conducted at the Philadelphia Land Based Engineering Site (LBES). Testing was first performed on the existing LBES 501-K17 gas turbine, which had a non-coated compressor. The compressor was then replaced by a coated compressor and the test was repeated. The test plan consisted of injecting a known amount of salt solution into the gas turbine inlet while gathering compressor performance degradation and fuel economy data for 0, 500, 1000, and 1250 KW generator load levels. This method facilitated a direct comparison of compressor degradation trends for the coated and non-coated compressors operating with the same turbine section, thereby reducing the number of variables involved. The collected data for turbine inlet, temperature, compressor efficiency, and fuel consumption were plotted as a percentage of the baseline conditions for each compressor. The results of each plot show a decrease in the rates of compressor degradation and SFC increase for the coated compressor compared to the non-coated compressor. Overall test results show that it is feasible to utilize anti-fouling compressor coatings to reduce the rate of specific fuel consumption increase associated with compressor performance degradation.


1978 ◽  
Author(s):  
C. F. McDonald

With soaring fuel costs and diminishing clean fuel availability, the efficiency of the industrial gas turbine must be improved by utilizing the exhaust waste heat by either incorporating a recuperator or by co-generation, or both. In the future, gas turbines for power generation should be capable of operation on fuels hitherto not exploited in this prime-mover, i.e., coal and nuclear fuel. The recuperative gas turbine can be used for open-cycle, indirect cycle, and closed-cycle applications, the latter now receiving renewed attention because of its adaptability to both fossil (coal) and nuclear (high temperature gas-cooled reactor) heat sources. All of these prime-movers require a viable high temperature heat exchanger for high plant efficiency. In this paper, emphasis is placed on the increasingly important role of the recuperator and the complete spectrum of recuperative gas turbine applications is surveyed, from lightweight propulsion engines, through vehicular and industrial prime-movers, to the large utility size nuclear closed-cycle gas turbine. For each application, the appropriate design criteria, types of recuperator construction (plate-fin or tubular etc.), and heat exchanger material (metal or ceramic) are briefly discussed.


1968 ◽  
Vol 72 (696) ◽  
pp. 1087-1094 ◽  
Author(s):  
F. J. Bayley ◽  
A. B. Turner

It is well known that the performance of the practical gas turbine cycle, in which compression and expansion are non-isentropic, is critically dependent upon the maximum temperature of the working fluid. In engines in which shaft-power is produced the thermal efficiency and the specific power output rise steadily as the turbine inlet temperature is increased. In jet engines, in which the gas turbine has so far found its greatest success, similar advantages of high temperature operation accrue, more particularly as aircraft speeds increase to utilise the higher resultant jet velocities. Even in high by-pass ratio engines, designed specifically to reduce jet efflux velocities for application to lower speed aircraft, overall engine performance responds very favourably to increased turbine inlet temperatures, in which, moreover, these more severe operating conditions apply continuously during flight, and not only at maximum power as with more conventional cycles.


Author(s):  
A. W. Reichert ◽  
M. Janssen

Siemens heavy duty Gas Turbines have been well known for their high power output combined with high efficiency and reliability for more than 3 decades. Offering state of the art technology at all times, the requirements concerning the cooling and sealing air system have increased with technological development over the years. In particular the increase of the turbine inlet temperature and reduced NOx requirements demand a highly efficient cooling and sealing air system. The new Vx4.3A family of Siemens gas turbines with ISO turbine inlet temperatures of 1190°C in the power range of 70 to 240 MW uses an effective film cooling technique for the turbine stages 1 and 2 to ensure the minimum cooling air requirement possible. In addition, the application of film cooling enables the cooling system to be simplified. For example, in the new gas turbine family no intercooler and no cooling air booster for the first turbine vane are needed. This paper deals with the internal air system of Siemens gas turbines which supplies cooling and sealing air. A general overview is given and some problems and their technical solutions are discussed. Furthermore a state of the art calculation system for the prediction of the thermodynamic states of the cooling and sealing air is introduced. The calculation system is based on the flow calculation package Flowmaster (Flowmaster International Ltd.), which has been modified for the requirements of the internal air system. The comparison of computational results with measurements give a good impression of the high accuracy of the calculation method used.


Author(s):  
Katsuyoshi Tada ◽  
Kei Inoue ◽  
Tomo Kawakami ◽  
Keijiro Saitoh ◽  
Satoshi Tanimura

Gas-turbine combined-cycle (GTCC) power generation is clean and efficient, and its demand will increase in the future from economic and social perspectives. Raising turbine inlet temperature is an effective way to increase combined cycle efficiency and contributes to global environmental conservation by reducing CO2 emissions and preventing global warming. However, increasing turbine inlet temperature can lead to the increase of NOx emissions, depletion of the ozone layer and generation of photochemical smog. To deal with this issue, MHPS (MITSUBISHI HITACHI POWER SYSTEMS) and MHI (MITSUBISHI HEAVY INDUSTRIES) have developed Dry Low NOx (DLN) combustion techniques for high temperature gas turbines. In addition, fuel flexibility is one of the most important features for DLN combustors to meet the requirement of the gas turbine market. MHPS and MHI have demonstrated DLN combustor fuel flexibility with natural gas (NG) fuels that have a large Wobbe Index variation, a Hydrogen-NG mixture, and crude oils.


Sign in / Sign up

Export Citation Format

Share Document