Probabilistic Analyses of HSCT Combustor Liner Components

Author(s):  
Shantaram S. Pai ◽  
P. L. N. Murthy

Deterministic as well as probabilistic analysis results for a typical cylindrical combustor liner segment is presented in this paper. The type of liner segment analyzed in this report is a part of a HSCT combustor. In the analyses, thermal profiles, material stiffnesses, and mechanical loadings are considered random. Probabilistic static, stability and free vibration analysis were conducted and results are presented in the form of cumulative distribution functions for critical location stresses, and buckling load. The results indicated that scatter in thermal loads and thermal expansion coefficients have significant impact on the longitudinal and hoop stresses. Also, the thickness variations appeared to be most significant, in influencing the probabilistic buckling behavior. Collectively, the results provide an insight on dominant variables which could be used for reliable/robust combustor liner design.

Author(s):  
Rama S. R. Gorla ◽  
Shantaram S. Pai ◽  
Jeffrey J. Rusick

A combustor liner was computationally simulated and probabilistically evaluated in view of the several uncertainties in the aerodynamic, structural, material and thermal variables that govern the combustor liner. The interconnection between the computational fluid dynamics code and the finite element structural analysis codes was necessary to couple the thermal profiles with structural design. The stresses and their variations were evaluated at critical points on the liner. Cumulative distribution functions and sensitivity factors were computed for stress responses due to the aerodynamic, mechanical and thermal random variables. It was observed that the inlet and exit temperatures have a lot of influence on the hoop stress. For prescribed values of inlet and exit temperatures, the Reynolds number of the flow, coefficient of thermal expansion, gas emissivity and absorptivity and thermal conductivity of the material have about the same impact on the hoop stress. These results can be used to quickly identify the most critical design variables in order to optimize the design and make it cost effective.


Author(s):  
Karren L. More

Beta-SiC is an ideal candidate material for use in semiconductor device applications. Currently, monocrystalline β-SiC thin films are epitaxially grown on {100} Si substrates by chemical vapor deposition (CVD). These films, however, contain a high density of defects such as stacking faults, microtwins, and antiphase boundaries (APBs) as a result of the 20% lattice mismatch across the growth interface and an 8% difference in thermal expansion coefficients between Si and SiC. An ideal substrate material for the growth of β-SiC is α-SiC. Unfortunately, high purity, bulk α-SiC single crystals are very difficult to grow. The major source of SiC suitable for use as a substrate material is the random growth of {0001} 6H α-SiC crystals in an Acheson furnace used to make SiC grit for abrasive applications. To prepare clean, atomically smooth surfaces, the substrates are oxidized at 1473 K in flowing 02 for 1.5 h which removes ∽50 nm of the as-grown surface. The natural {0001} surface can terminate as either a Si (0001) layer or as a C (0001) layer.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


2021 ◽  
Vol 13 (6) ◽  
pp. 1096
Author(s):  
Soi Ahn ◽  
Sung-Rae Chung ◽  
Hyun-Jong Oh ◽  
Chu-Yong Chung

This study aimed to generate a near real time composite of aerosol optical depth (AOD) to improve predictive model ability and provide current conditions of aerosol spatial distribution and transportation across Northeast Asia. AOD, a proxy for aerosol loading, is estimated remotely by various spaceborne imaging sensors capturing visible and infrared spectra. Nevertheless, differences in satellite-based retrieval algorithms, spatiotemporal resolution, sampling, radiometric calibration, and cloud-screening procedures create significant variability among AOD products. Satellite products, however, can be complementary in terms of their accuracy and spatiotemporal comprehensiveness. Thus, composite AOD products were derived for Northeast Asia based on data from four sensors: Advanced Himawari Imager (AHI), Geostationary Ocean Color Imager (GOCI), Moderate Infrared Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS). Cumulative distribution functions were employed to estimate error statistics using measurements from the Aerosol Robotic Network (AERONET). In order to apply the AERONET point-specific error, coefficients of each satellite were calculated using inverse distance weighting. Finally, the root mean square error (RMSE) for each satellite AOD product was calculated based on the inverse composite weighting (ICW). Hourly AOD composites were generated (00:00–09:00 UTC, 2017) using the regression equation derived from the comparison of the composite AOD error statistics to AERONET measurements, and the results showed that the correlation coefficient and RMSE values of composite were close to those of the low earth orbit satellite products (MODIS and VIIRS). The methodology and the resulting dataset derived here are relevant for the demonstrated successful merging of multi-sensor retrievals to produce long-term satellite-based climate data records.


Author(s):  
Rama Subba Reddy Gorla

Heat transfer from a nuclear fuel rod bumper support was computationally simulated by a finite element method and probabilistically evaluated in view of the several uncertainties in the performance parameters. Cumulative distribution functions and sensitivity factors were computed for overall heat transfer rates due to the thermodynamic random variables. These results can be used to identify quickly the most critical design variables in order to optimize the design and to make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in heat transfer and to the identification of both the most critical measurements and the parameters.


2013 ◽  
Vol 646 ◽  
pp. 59-66 ◽  
Author(s):  
Arcady Zhukov ◽  
Margarita Churyukanova ◽  
Lorena Gonzalez-Legarreta ◽  
Ahmed Talaat ◽  
Valentina Zhukova ◽  
...  

We studied the effect ofthe magnetoelastic ansitropy on properties of nanostructured glass-coated microwires with soft magnetic behaviour (Finemet-type microwires of Fe70.8Cu1Nb3.1Si14.5B10.6, Fe71.8Cu1Nb3.1Si15B9.1 and Fe73.8Cu1Nb3.1Si13B9.1 compositions) and with granular structure (Cu based Co-Cu microwires). The magnetoelastic energy originated from the difference in thermal expansion coefficients of the glass and metallic alloy during the microwires fabrication, affected the hysteresis loops, coercivity and heat capacity of Finemet-type microwires. Hysteresis loops of all as-prepared microwires showed rectangular shape, typical for Fe-rich microwires. As expected, coercivity, HC, of as-prepared microwires increases with decreasing of the ratio ρ defined as the ratio between the metallic nucleus diameter, d to total microwire diameter, D. On the other hand we observed change of heat capacity in microwires with different ratio ρ. In the case of Co-Cu microwires ρ- ratio affected the structure and the giant magneto-resistance of obtained microwires.


2003 ◽  
Vol 125 (4) ◽  
pp. 512-519 ◽  
Author(s):  
C. J. Liu ◽  
L. J. Ernst ◽  
G. Wisse ◽  
G. Q. Zhang ◽  
M. Vervoort

Interface delamination failure caused by thermomechanical loading and mismatch of thermal expansion coefficients and other material properties is one of the important failure modes occurring in electronic packages, thus a threat for package reliability. To solve this problem, both academic institutions and industry have been spending tremendous research effort in order to understand the inherent failure mechanisms and to develop advanced and reliable experimental and simulation methodologies, thus to be able to predict and to avoid interface delamination before physical prototyping. Various damage mechanisms can be involved and can result in interface delamination phenomena. These are not all sufficiently addressed and/or reported so far, probably because of the complexities caused by the occurrence of strong geometric and materials nonlinearities. One of the phenomena being insufficiently understood so far is the so-called buckling-driven delamination of thin metalic layers on ceramic substrates. This phenomenon will be discussed in the present paper.


Sign in / Sign up

Export Citation Format

Share Document