scholarly journals PIV Investigation of Couette-Taylor Flows With Axial Flows

Author(s):  
Emna Berrich ◽  
Fethi Aloui ◽  
Jack Legrand

The Couette Taylor flows CTF strongly depend on geometrical characteristics of CT systems radio and aspect ratios. The superposition of axial flow may accentuate this dependence. Previous studies carried with relatively small radial and/or aspect ratios [1–3] or relatively low Taylor numbers (or rotational Reynolds number ReΩ) and/or low axial flux rates (exp. [4]: ReΩ < 50 and Reax < 400; [1] : Reax < 4), or limited to analytical approaches or numerical simulations adopting simplified hypothesis and assumptions. In order to complete information obtained for vortices characterization for relatively “high” Taylor numbers (303 ≤Ta≤ 1212) and relatively “high” axial Reynolds numbers (Reax ≤107), for relatively “big” CTS with a radial ratio η = Rint/Rout = 0.855 and an aspect ratio Γ= H/d = 31.03 (where H is the CTS height and d = (Rout – Rint) is the gap thickness), we realized a quantitative experimental study using standard and speed Velocimetry per Image of Particles (PIV) technique. The vortex structures for CTF with and without an “ascending” axial flow, according to the “direct protocol” i.e. The axial flow is superposed to an initial fully developed rotational flow were studied [5]. The vortex direction strongly depends on protocol history. The cartographies of velocity components are illustrated. The results mainly concern axial and radial velocity components. The cartographies of the vorticity ω, and the detection criteria Q and Γ2 are presented and discussed. The alternating between positive and negative values of axial velocity component characterizes the presence of contrarotating vortices. This allows determining the axial wavelengths (λ) for WTVF and MWTVF with and without axial flows. A same axial flow can have a stabilizing effect for a regime flow and a destabilizing effect for another. It enhanced the overlapping, the stretching, the folding or the breaking of vortices. From WTVF to MWTVF to TN, we illustrated that the vortices mixing is enhanced when the Taylor number increases due to vortices stretching and folding.

Author(s):  
Jorge Silva-Leon ◽  
Andrea Cioncolini

Abstract This paper describes an experimental study of the spanwise vortex shedding frequencies from cantilever flexible filaments which are bent (reconfigured) when exposed to air crossflow. At a reduced velocity of approximately U* = 1500 (based on filament diameter) the filaments started to vibrate in the inline direction. Hot-wire anemometry was thus employed to investigate the wake flow of filaments of three aspect ratios (L/D = 38, 80, and 113) at Reynolds numbers Re &lt; 300. Despite the large relative inclination angles between the filament and the flow direction, the vortex shedding frequency measured along the span of the filaments remained close to those of a cylinder in pure crossflow. Moreover, it was found that as the aspect ratio (axial length) of the filaments was increased, vortex shedding lost coherence towards the free end of the filaments, whereas this was not the case for the shortest aspect ratio filament currently tested. This is thought to be due to the interaction between the crossflow vortex shedding and the axial flow component developing along the wake of the inclined filaments. Through comparisons with stiff inclined wires it was confirmed that the spanwise vortex shedding behaviors observed (frequency and coherence) were not modulated by the motions of the filaments.


2000 ◽  
Vol 411 ◽  
pp. 1-38 ◽  
Author(s):  
C. ROSS ETHIER ◽  
SUJATA PRAKASH ◽  
DAVID A. STEINMAN ◽  
RICHARD L. LEASK ◽  
GREGORY G. COUCH ◽  
...  

Numerical and experimental techniques were used to study the physics of flow separation for steady internal flow in a 45° junction geometry, such as that observed between two pipes or between the downstream end of a bypass graft and an artery. The three-dimensional Navier–Stokes equations were solved using a validated finite element code, and complementary experiments were performed using the photochromic dye tracer technique. Inlet Reynolds numbers in the range 250 to 1650 were considered. An adaptive mesh refinement approach was adopted to ensure grid-independent solutions. Good agreement was observed between the numerical results and the experimentally measured velocity fields; however, the wall shear stress agreement was less satisfactory. Just distal to the ‘toe’ of the junction, axial flow separation was observed for all Reynolds numbers greater than 250. Further downstream (approximately 1.3 diameters from the toe), the axial flow again separated for Re [ges ] 450. The location and structure of axial flow separation in this geometry is controlled by secondary flows, which at sufficiently high Re create free stagnation points on the model symmetry plane. In fact, separation in this flow is best explained by a secondary flow boundary layer collision model, analogous to that proposed for flow in the entry region of a curved tube. Novel features of this flow include axial flow separation at modest Re (as compared to flow in a curved tube, where separation occurs only at much higher Re), and the existence and interaction of two distinct three-dimensional separation zones.


1989 ◽  
Vol 111 (4) ◽  
pp. 426-433 ◽  
Author(s):  
F. E. McCaughan

When a compression system becomes unstable, the mode of response depends on the operating and system parameters, such as throttle setting and B parameter. Previous numerical work on the model developed by Moore and Greitzer has provided a limited picture of the parametric effects. Applying bifurcation theory to a single-harmonic version of the model has supplied much more complete information, defining the boundaries of each mode of response in the parameter space. Specifically this is shown in a plot of B versus throttle setting, which compares well with the corresponding map produced experimentally. We stress the importance of the shape of the rotating stall characteristic. The analysis shows the qualitative difference between classic surge and deep surge.


Author(s):  
Matthew A. Smith ◽  
Randall M. Mathison ◽  
Michael G. Dunn

Heat transfer distributions are presented for a stationary three passage serpentine internal cooling channel for a range of engine representative Reynolds numbers. The spacing between the sidewalls of the serpentine passage is fixed and the aspect ratio (AR) is adjusted to 1:1, 1:2, and 1:6 by changing the distance between the top and bottom walls. Data are presented for aspect ratios of 1:1 and 1:6 for smooth passage walls and for aspect ratios of 1:1, 1:2, and 1:6 for passages with two surfaces turbulated. For the turbulated cases, turbulators skewed 45° to the flow are installed on the top and bottom walls. The square turbulators are arranged in an offset parallel configuration with a fixed rib pitch-to-height ratio (P/e) of 10 and a rib height-to-hydraulic diameter ratio (e/Dh) range of 0.100 to 0.058 for AR 1:1 to 1:6, respectively. The experiments span a Reynolds number range of 4,000 to 130,000 based on the passage hydraulic diameter. While this experiment utilizes a basic layout similar to previous research, it is the first to run an aspect ratio as large as 1:6, and it also pushes the Reynolds number to higher values than were previously available for the 1:2 aspect ratio. The results demonstrate that while the normalized Nusselt number for the AR 1:2 configuration changes linearly with Reynolds number up to 130,000, there is a significant change in flow behavior between Re = 25,000 and Re = 50,000 for the aspect ratio 1:6 case. This suggests that while it may be possible to interpolate between points for different flow conditions, each geometric configuration must be investigated independently. The results show the highest heat transfer and the greatest heat transfer enhancement are obtained with the AR 1:6 configuration due to greater secondary flow development for both the smooth and turbulated cases. This enhancement was particularly notable for the AR 1:6 case for Reynolds numbers at or above 50,000.


2003 ◽  
Vol 27 (3) ◽  
pp. 183-194 ◽  
Author(s):  
Yukimaru Shimizu ◽  
Edmond Ismaili ◽  
Yasunari Kamada ◽  
Takao Maeda

Wind tunnel results are reported concerning the effects of blade aspect ratio and Reynolds number on the performance of a horizontal axis wind turbine (HAWT) with Mie-type1 tip attachments. The flow behaviour around the blade tips and the Mie-type tip vanes is presented. Detailed surface oil film visualization and velocity measurements around the blade tips, with and without Mie vanes, were obtained with the two-dimensional, Laser-Doppler Velocimetry method. Experiments were performed with rotors having blades with different aspect ratio and operating at different Reynolds numbers. The properties of the vortices generated by the Mie vanes and the blade tips were carefully studied. It was found that increased power augmentation by Mie vanes is achieved with blades having smaller aspect ratio and smaller Reynolds number.


2002 ◽  
Vol 459 ◽  
pp. 371-396 ◽  
Author(s):  
C. OLENDRARU ◽  
A. SELLIER

The effects of viscosity on the instability properties of the Batchelor vortex are investigated. The characteristics of spatially amplified branches are first documented in the convectively unstable regime for different values of the swirl parameter q and the co-flow parameter a at several Reynolds numbers Re. The absolute–convective instability transition curves, determined by the Briggs–Bers zero-group velocity criterion, are delineated in the (a, q)-parameter plane as a function of Re. The azimuthal wavenumber m of the critical transitional mode is found to depend on the magnitude of the swirl q and on the jet (a > −0.5) or wake (a < −0.5) nature of the axial flow. At large Reynolds numbers, the inviscid results of Olendraru et al. (1999) are recovered. As the Reynolds number decreases, the pocket of absolute instability in the (a, q)-plane is found to shrink gradually. At Re = 667; the critical transitional modes for swirling jets are m = −2 or m = −3 and absolute instability prevails at moderate swirl values even in the absence of counterflow. For higher swirl levels, the bending mode m = −1 becomes critical. The results are in good overall agreement with those obtained by Delbende et al. (1998) at the same Reynolds number. However, a bending (m = +1) viscous mode is found to partake in the outer absolute–convective instability transition for jets at very low positive levels of swirl. This asymmetric branch is the spatial counterpart of the temporal viscous mode isolated by Khorrami (1991) and Mayer & Powell (1992). At Re = 100, the critical transitional mode for swirling jets is m = −2 at moderate and high swirl values and, in order to trigger an absolute instability, a slight counterflow is always required. A bending (m = +1) viscous mode again becomes critical at very low swirl values. For wakes (a < −0.5) the critical transitional mode is always found to be the bending mode m = −1, whatever the Reynolds number. However, above q = 1.5, near-neutral centre modes are found to define a tongue of weak absolute instability in the (a, q)-plane. Such modes had been analytically predicted by Stewartson & Brown (1985) in a strictly temporal inviscid framework.


2012 ◽  
Vol 7 (4) ◽  
pp. 79-86
Author(s):  
Evgeny Podryabinkin ◽  
Valeriy Rudyak

In this paper fully developed turbulent flows of Newtonian fluid in cylindrical annulus with eccentricity and rotating inner cylinder has been systematically studied. Modeling has been performed on the base of Menter Shear Transport model of turbulence in a wide range of Reynolds numbers, eccentricity, and radii ratio. As the result dependencies of flow field and pressure drop along the channel on geometrical and flow parameters have been found. It was shown that flow characteristics and dependence of the pressure drop are determined by which flow axial or rotational dominates and caused generation of turbulence. When rotational flow dominates the dependence of the pressure drop is almost linear. When axial flow dominates rotation practically has no impact on the pressure drop in concentric annulus. Appearance of the reverse flow in eccentric channel has a major impact on the pressure drop. In case when rotational flow dominates, appearance of the reverse flow is accompanied by threshold flow restructuring at some critical value of eccentricity. A correlation for determination of the pressure drop in various regimes has been developed for the case of concentric annulus


2000 ◽  
Author(s):  
Stephen E. Turner ◽  
Hongwei Sun ◽  
Mohammad Faghri ◽  
Otto J. Gregory

Abstract This paper presents an experimental investigation on nitrogen and helium flow through microchannels etched in silicon with hydraulic diameters between 10 and 40 microns, and Reynolds numbers ranging from 0.3 to 600. The objectives of this research are (1) to fabricate microchannels with uniform surface roughness and local pressure measurement; (2) to determine the friction factor within the locally fully developed region of the microchannel; and (3) to evaluate the effect of surface roughness on momentum transfer by comparison with smooth microchannels. The friction factor results are presented as the product of friction factor and Reynolds number plotted against Reynolds number. The following conclusions have been reached in the present investigation: (1) microchannels with uniform corrugated surfaces can be fabricated using standard photolithographic processes; and (2) surface features with low aspect ratios of height to width have little effect on the friction factor for laminar flow in microchannels.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Charlton Campbell ◽  
Michael G. Olsen ◽  
R. Dennis Vigil

Optical-based experiments were carried out using the immiscible pair of liquids hexane and water in a vertically oriented Taylor–Couette reactor operated in a semibatch mode. The dispersed droplet phase (hexane) was continually fed and removed from the reactor in a closed loop setup. The continuous water phase did not enter or exit the annular gap. Four distinct flow patterns were observed including (1) a pseudo-homogenous dispersion, (2) a weakly banded regime, (3) a horizontally banded dispersion, and (4) a helical flow regime. These flow patterns can be organized into a two-dimensional regime map using the azimuthal and axial Reynolds numbers as axes. In addition, the dispersed phase holdup was found to increase monotonically with both the azimuthal and axial Reynolds numbers. The experimental observations can be explained in the context of a competition between the buoyancy-driven axial flow of hexane droplets and the wall-driven vortex flow of the continuous water phase.


1953 ◽  
Vol 57 (508) ◽  
pp. 241-243
Author(s):  
J. M. Stephenson

Compressor stages are usually designed on the assumption that the gas velocity is nowhere affected by the friction at the walls. The only way in which viscosity is taken into account is in the assumed efficiency, and in a guessed “work-done factor,” which ensures that by aiming high the required work is actually attained.It is known that the radial profile of the axial velocity component becomes more and more peaked through successive stages of a compressor, so that the assumptions just quoted become very inaccurate. It is possible that the efficiency of a stage could be raised considerably if the axial velocity profile were controlled; moreover up to 20 per cent. more work could be done if a “ work-done factor ” did not have to be applied.


Sign in / Sign up

Export Citation Format

Share Document