Wake Flow Visualization of a Simplified Vehicle Model During Flow State Change

Author(s):  
Takuji Nakashima ◽  
Takashi Moriuchi ◽  
Yan Chao ◽  
Itsuhei Kohri

Abstract A flow around a three-dimensional bluff body such as an automobile sometimes exhibits a bi-stable state wherein two stable flow states exist for a single condition. Better aerodynamic characteristics can be obtained if we suppress or promote the flow state change between such bi-stable states. Hence, it is necessary to understand the trigger conditions and process of the flow state change. In this study, we investigated the transient aerodynamics of the Ahmed model with the slant angle of 32°, exceeding the critical angle of 30°, known to exhibit bi-stable state under crosswind conditions. Changing the Yaw angle by rotating the model, produced change in the flow state, accompanied by time delay. While continuously measuring fluid force, we performed PIV measurement triggered by a sudden change in fluid dynamic force corresponding to the flow state change. Using these methods, we realized the synchronous measurement of the fluid force and wake flow during the flow state change. At the beginning of the flow state change, flow velocity changed around the trailing edge of the slant surface. Subsequently, the separated flow above the slant surface increased. A gradual decrease of drag coefficient was observed before the flow state change though flow behavior associated with the drag change was not observed in the velocity field of PIV measurement.

1983 ◽  
Vol 34 (1) ◽  
pp. 24-45 ◽  
Author(s):  
X.J. Xia ◽  
P.W. Bearman

SummaryThe effect of base slant on the base pressure distribution, drag coefficient and vortex shedding characteristics of a model consisting of an axisymmetric main body with an ellipsoidal nose have been investigated for three fineness ratios; 3, 6 and 9. A sudden change in the drag coefficient and separated flow pattern is observed at a critical slant angle (for constant incidence) or at a critical angle of incidence (for a constant base slant angle). The tests confirm that the value of the maximum drag coefficient is extremely sensitive to angle of incidence. Measurements of the frequency of vortex shedding are presented and the structure of the wake is investigated using smoke visualization and hot-wire correlation measurements. The wake is found to be far less stable than that from a two-dimensional bluff body and the vortex structures are sometimes in-phase and sometimes out of phase across the wake. The effect of free-stream turbulence on this family of body shapes is observed to be different to that on three-dimensional blunt-faced bluff bodies. Free-stream turbulence is found to have a minimal effect on base pressure for slant angles giving a recirculating type near wake flow. When longitudinal vortices are present the addition of free-stream turbulence slightly reduces the magnitude of the peak suctions recorded on the base but has little effect on base drag.


2020 ◽  
Vol 22 (4) ◽  
pp. 1047-1060
Author(s):  
S. Shadmani ◽  
S. M. Mousavi Nainiyan ◽  
R. Ghasemiasl ◽  
M. Mirzaei ◽  
S. G. Pouryoussefi

AbstractAhmed Body is a standard and simplified shape of a road vehicle that's rear part has an important role in flow structure and it's drag force. In this paper flow control around the Ahmed body with the rear slant angle of 25° studied by using the plasma actuator system situated in middle of the rear slant surface. Experiments conducted in a wind tunnel in two free stream velocities of U = 10m/s and U = 20m/s using steady and unsteady excitations. Pressure distribution and total drag force were measured and smoke flow visualization carried out in this study. The results showed that at U = 10m/s using plasma actuator suppress the separated flow over the rear slant slightly and be effective on pressure distribution. Also, total drag force reduces in steady and unsteady excitations for 3.65% and 2.44%, respectively. At U = 20m/s, using plasma actuator had no serious effect on the pressure distribution and total drag force.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Dilip K. Maiti ◽  
Rajesh Bhatt

This study focuses on interactions of vortices generated by a family of eddy-promoting upstream rectangular cylinders (of different heights a* and widths b*) with the shear layers of a downstream square cylinder (of height A*) placed near a plane in an in-line tandem arrangement under the incidence of Couette–Poiseuille flow based nonuniform linear/nonlinear velocity profile. The dimensionless operational parameters are cylinders spacing distance S, ratio of heights r2=a*/A* (≤1), aspect ratio r1=b*/a* (≤1), Reynolds number Re (based on the velocity at height A* for Couette flow), ReU2 (based on the velocity at height 10A* for Couette–Poiseuille flow), and nondimensional pressure gradient P at the inlet. The governing equations are solved numerically through a pressure-correction-based iterative algorithm (SIMPLE) with the quadratic upwind interpolation for convective kinematics (QUICK) scheme for convective terms. The major issue of appearing multiple peaks in the spectrum of the fluctuating lift coefficient of the downstream cylinder is addressed and justified exhibiting the flow patterns. While considering the rectangular shape (for the upstream cylinder) and nonlinear velocity (at the inlet), the possibility of generating the unsteadiness in the steady wake flow of the downstream cylinder at a Re (based on height a*) less than the critical Re for the downstream cylinder is documented here. The dependence of flow characteristics of the downstream cylinder on the angle of incident linear velocity at specific S and r1 is also demonstrated here. It is observed that the discontinuous jump in the aerodynamic characteristics (due to a sudden change from one distinct flow pattern to the other in the critical spacing distance regime) is directly proportional to the height of the vortex generator. Increasing P under the same characteristic velocity causes the steady flow of cylinder(s) to convert to a periodic flow and reduces the critical spacing distance for the vortex generator.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 328
Author(s):  
Ebenezer Essel ◽  
Subhadip Das ◽  
Ram Balachandar

Understanding the wake characteristics between two in-line vehicles is essential for improving and developing new strategies for reducing in-cabin air pollution. In this study, Ahmed bodies are used to investigate the effects of the rear slant angle of a leading vehicle on the mean flow and turbulent statistics between two vehicles. The experiments were conducted with a particle image velocimetry at a fixed Reynolds number, R e H = 1.7 × 10 4 , and inter-vehicle spacing distance of 0.75 L , where H and L are the height and length of the model. The rear slant angles investigated were a reference square back, high-drag angle ( α = 25 ° ) and low-drag angle ( α = 35 ° ). The mean velocities, Reynolds stresses, production of turbulent kinetic energy and instantaneous swirling strength are used to provide physical insight into the wake dynamics between the two bodies. The results indicate that the recirculation region behind the square back Ahmed body increases while those behind the slant rear-end bodies decreases in the presence of a follower. For the square back models, the dominant motion in the wake region is a strong upwash of jet-like flow away from the road but increasing the rear slant angle induces a stronger downwash flow that suppresses the upwash and dominates the wake region.


2011 ◽  
Vol 2011.48 (0) ◽  
pp. 79-80
Author(s):  
Masayoshi OKAMIYA ◽  
Takayuki YAMAGATA ◽  
Toshifumi MA「SUI ◽  
Nobuyuki FUJISAWA

2020 ◽  
Vol 22 (1) ◽  
pp. 239-252
Author(s):  
S. Shadmani ◽  
S. M. Mousavi Nainiyan ◽  
R. Ghasemiasl ◽  
M. Mirzaei ◽  
S. G. Pouryoussefi

AbstractAhmed Body is a standard and simplified shape of a road vehicle that's rear part has an important role in flow structure and it's drag force. In this paper flow control around the Ahmed body with the rear slant angle of 25° studied by using the plasma actuator system situated in middle of the rear slant surface. Experiments conducted in a wind tunnel in two free stream velocities of U = 10 m/s and U = 20 m/s using steady and unsteady excitations. Pressure distribution and total drag force was measured and smoke flow visualization carried out in this study. The results showed that at U = 10 m/s using plasma actuator suppress the separated flow over the rear slant slightly and be effective on pressure distribution. Also total drag force reduces in steady and unsteady excitations for 3.65% and 2.44%, respectively. At U = 20 m/s, using plasma actuator had no serious effect on the pressure distribution and total drag force.


Author(s):  
Masaki Fuchiwaki ◽  
Kazuhiro Tanaka

An unsteady flow in a low Reynolds number region attracts attention in recent years. Various experiments/numerical analyses have been conducted in wake flow fields of objects with unsteady motions in low Reynolds number regions have been studied and reported recently. The authors clarified vortical structures in a wake of a rigid airfoil (NACA0010) with pitching, heaving and an unsteady motion with these motions combined quantitatively. The purpose of this study is to evaluate quantitatively the vortex flow formed in the wake of a flat airfoil whose edge deforms elastically by a PIV measurement by giving a heaving motion to the flat plate in a low Reynolds number region. A clear thrust producing vortex street equivalent to the airfoil shape can be formed by giving elasticity to the latter part of a rigid flat airfoil. vortices forming the thrust producing vortex street is extremely large and their vorticity is equivalent to that of NACA0010. In the mainstream of a vortex street forming a propulsion power generating vortex street, the vortex interval in the vertical direction is comparatively large and an interference of the vortices rolling up from the pressure and suction sides is small therefore the accelerating flow induced by these vortices becomes as large as the mainstream. The dynamic thrust acting on the elastic flat plate is greater than that of NACA0010. Because vortices with high vorticity roll up and these vortices are aligned with a comparatively large vortex interval in the vertical direction therefore a large accelerating flow is induced in the wake.


2019 ◽  
Vol 11 (23) ◽  
pp. 6670
Author(s):  
Ernesto Chavero-Navarrete ◽  
Mario Trejo-Perea ◽  
Juan-Carlos Jáuregui-Correa ◽  
Roberto-Valentín Carrillo-Serrano ◽  
José-Gabriel Rios-Moreno

The population growth demands a greater generation of energy, an alternative is the use of small wind turbines, however, obtaining maximum wind power becomes the main challenge when there are drastic changes in wind speed. The angle of the blades rotates around its longitudinal axis to control the effect of the wind on the rotation of the turbine, a proportional-integral controller (PI) for this angle achieves stability and precision in a stable state but is not functional with severe alterations in wind speed, a different response time is necessary in both cases. This article proposes a novel pitch angle controller based on auto-tuning of PI gains, for which it uses a teaching–learning based optimization (TLBO) algorithm. The wind speed and the value of the magnitude of the change are used by the algorithm to determine the appropriate PI gains at different wind speeds, so it can adapt to any sudden change in wind speed. The effectiveness of the proposed method is verified by experimental results for a 14 KW permanent magnet synchronous generator (PMSG) wind turbine located at the Universidad Autónoma de Querétaro (UAQ), Mexico.


2013 ◽  
Vol 718-720 ◽  
pp. 1811-1815 ◽  
Author(s):  
Xiang Gao ◽  
Jun Hu ◽  
Zhi Qiang Wang

A three-dimensional horizontal axis wind turbine model was experimentally studied. The experiment was carried out in a laboratory wind tunnel. With PIV measurement, details about flow fields in the near wakeof the turbine blade were obtained. The result shows vortices generateon the tailing edge of the blade, and propagatedownstream then dissipate into small vortices. Vortices also generate at the tip of the blade, propagate downstream and along the radial direction then dissipate. The dissipation of the tip vortex is slower than the former. We also find that the wake of turbine blade rotates in the opposite direction of the blade.


1980 ◽  
Vol 31 (2) ◽  
pp. 132-147 ◽  
Author(s):  
Thomas Morel

SummaryThe effects of slanting the base of a slender axisymmetric cylinder (length/diameter ratio of 9), aligned with the flow, was studied experimentally. The body was equipped with interchangeable rear ends covering a range of slant angles between 0° (vertical) and 70°. It was found that the base slant has a very dramatic effect on body drag, particularly in a relatively narrow range of slant angles where the drag coefficient exhibits a large local maximum (over-shoot). Detailed study of the flow showed that the drag overshoot is related to the existence of two very different Separation patterns on the slanted base. One pattern is similar to that found behind axisymmetric bodies with no base slant, and its main feature is the presence of a closed Separation region adjacent to the base. The other pattern is highly three-dimensional with two streamwise vortices forming along the sides of the slanted base. This pattern sets in very abruptly at a “critical” slant angle α ∼ 47°. Drag force measurements showed that, at first, the drag coefficient slowly increases with the slant angle, but then jumps suddenly upwards to more than double its baseline value (from CD = 0.24 to CD = 0.625) at the critical angle. At angles higher than that CD decreases again, and at 70° it is about equal to the baseline value. Further effects of the slant angle are the generation of a large side force and a significant increase in near-wake flow periodicity.


Sign in / Sign up

Export Citation Format

Share Document