Efficient Heat Transfer by Phase Transition in Microstructured Devices

Author(s):  
Stefan Maikowske ◽  
Juergen J. Brandner ◽  
Roland Dittmeyer

Devices with microchannels or similar structures with dimensions in the range of a few 100 micrometers, so-called microstructured devices, have become a powerful tool in modern process engineering for transferring huge amounts of thermal energy. The high internal surface of these devices, caused by small characteristic channel dimensions, lead to very high specific heat transfer rates. Additional increase of these high heat transfer capabilities is enabled by taking advantage of the latent heat of evaporation. During fundamental research activities phase transition and accompanying phenomena in arrays out of straight microchannels as well as novel microstructures were investigated to obtain new and additional information about these processes. A novel microstructure which is based on a new innovative design away from straight channels is able to enhance evaporation. This design, based on semicircular and semi-elliptical microstructures, leads to mixing effects as well as flow acceleration by pressure release effects including increased heat transfer properties. This novel microstructure reaches highly enhanced evaporation performance compared to linear microchannels.

2008 ◽  
Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

The use of an interrupted plate fin with surface roughness in the form of split-dimples is investigated. Time-dependent high-fidelity simulations are conducted for laminar, early turbulent, and fully turbulent flows, ReH = 360, 800, and 2000. Detailed analysis of the domain’s flow structure, turbulent statistics, and heat transfer distribution is presented. Regions of high heat transfer occur at the fin and protrusion leading edges, at flow impingement on the protrusion faces, and flow acceleration region between protrusions. Flow separation and large wakes induced by the large protruding surfaces of the split-dimples, increase friction losses and reduce heat transfer from the fin. The split-dimple fin has a heat conductance 60–175% higher than that of the plate fin, but at 4–8 times the pressure drop.


2018 ◽  
Vol 240 ◽  
pp. 03010
Author(s):  
Tomasz Muszynski ◽  
Rafal Andrzejczyk ◽  
Carlos Dorao

A crucial step to assure proficient work of power and process apparatus is their proper design. A wide array of those devices operates within boiling or condensation of the working fluid to benefit from high heat transfer rates. Two-phase flows are associated with high heat transfer coefficients because of the latent heat of evaporation and high turbulence level between the liquid and the solid surface. Predicting heat transfer coefficient and pressure drop is a challenging task, and has been pursued by researchers for decades. In the case of diabatic flows, the total pressure drop is due to the change in kinetic and potential energy. The article presents detailed boiling pressure drops data for R134a at a saturation temperature of 19.4°C. Study cases have been set for a mass flux varying from 300 to 500 kg/m2s. Presented data along with the data reduction procedure was used to obtain the momentum pressure drop values during flow boiling. The study focuses on experimental values of momentum pressure drop component and its prediction based on various void fraction models and entrainment effects.


Author(s):  
Weijie Wang ◽  
Shaopeng Lu ◽  
Hongmei Jiang ◽  
Qiusheng Deng ◽  
Jinfang Teng ◽  
...  

Numerical simulations are conducted to present the aerothermal performance of a turbine blade tip with cutback squealer rim. Two different tip clearance heights (0.5%, 1.0% of the blade span) and three different cavity depths (2.0%, 3.0%, and 6.0% of the blade span) are investigated. The results show that a high heat transfer coefficient (HTC) strip on the cavity floor appears near the suction side. It extends with the increase of tip clearance height and moves towards the suction side with the increase of cavity depth. The cutback region near the trailing edge has a high HTC value due to the flush of over-tip leakage flow. High HTC region shrinks to the trailing edge with the increase of cavity depth since there is more accumulated flow in the cavity for larger cavity depth. For small tip clearance cases, high HTC distribution appears on the pressure side rim. However, high HTC distribution is observed on suction side rim for large tip clearance height. This is mainly caused by the flow separation and reattachment on the squealer rims.


Author(s):  
Amit Gupta ◽  
Xuan Wu ◽  
Ranganathan Kumar

This study discusses the merits of various physical mechanisms that are responsible for enhancing the heat transfer in nanofluids. Experimental studies have cemented the claim that ‘seeding’ liquids with nanoparticles can increase the thermal conductivity of the nanofluid by up to 40% for metallic and oxide nanoparticles dispersed in a base liquid. Experiments have also shown that the rise in conductivity of the nanofluid is highly dependent on the size and concentration of the nanoparticles. On the theoretical side, traditional models like Maxwell or Hamilton-Crosser models cannot explain this unusually high heat transfer. Several mechanisms have been postulated in the literature such as Brownian motion, thermal diffusion in nanoparticles and thermal interaction of nanoparticles with the surrounding fluid, the formation of an ordered liquid layer on the surface of the nanoparticle and microconvection. This study concentrates on 3 possible mechanisms: Brownian dynamics, microconvection and lattice vibration of nanoparticles in the fluid. By considering two nanofluids, copper particles dispersed in ethylene glycol, and silica in water, it is determined that translational Brownian motion of the nanoparticles, presence of an interparticle potential and the microconvection heat transfer are mechanisms that play only a smaller role in the enhancement of thermal conductivity. On the other hand, the lattice vibrations, determined by molecular dynamics simulations show a great deal of promise in increasing the thermal conductivity by as much as 23%. In a simplistic sense, the lattice vibration can be regarded as a means to simulate the phononic transport from solid to liquid at the interface.


Author(s):  
Ankit Kalani ◽  
Satish G. Kandlikar

Flow boiling in microchannels offers many advantages such as high heat transfer coefficient, higher surface area to volume ratio, low coolant inventory, uniform temperature control and compact design. The application of these flow boiling systems has been severely limited due to early critical heat flux (CHF) and flow instability. Recently, a number of studies have focused on variable flow cross-sectional area to augment the thermal performance of microchannels. In a previous work, the open microchannel with manifold (OMM) configuration was experimentally investigated to provide high heat transfer coefficient coupled with high CHF and low pressure drop. In the current work, high speed images of plain surface using tapered manifold are obtained to gain an insight into the nucleating bubble behavior. The mechanism of bubble nucleation, growth and departure are described through high speed images. Formation of dry spots for both tapered and uniform manifold geometry is also discussed.


Author(s):  
A. Alhadhrami ◽  
Hassan A. H. Alzahrani ◽  
B. M. Prasanna ◽  
N. Madhukeshwara ◽  
K. C. Rajendraprasad ◽  
...  

The features of ferromagnetic fluids make it supportive for an extensive usage in loudspeakers, magnetic resonance imaging, computer hard drives, directing of magnetic drug and magnetic hyperthermia. Owing to all such potential applications, the current investigation is to understand the relationship between the thermal distribution, magnetic field and resulting fluid flow of Maxwell liquid over a stretching sheet. Investigation of thermal energy and concentration is carried out in the presence of thermal radiation, non-uniform heat sink/source, chemical reaction, Stefan blowing, magnetic dipole, thermophoresis and Brownian motion. Also, microorganisms are considered just to stabilize the suspended nanoparticles. Boundary layer approximation is employed during mathematical derivation. Based on a new constitutive relation, the governing equations are formulated and are reduced into a coupled non-linear system of equations using appropriate transformations. Further, these equations are solved numerically using fourth-order Runge–Kutta method with shooting technique. The impact of involved parameters is discussed and analysed graphically. Outcomes disclose that Newtonian liquid shows high heat transfer when compared to non-Newtonian (Maxwell) liquid for increased values of Brownian motion and thermophoresis parameters. Increased values of Peclet number declines the rate of gyrotactic microorganisms. Finally, an increase in Brownian and thermophoresis motion parameters declines the rate of heat transfer.


Author(s):  
K. Takeishi ◽  
T. Nakae ◽  
K. Watanabe ◽  
M. Hirayama

Pin fins are normally used for cooling the trailing edge region of a turbine, where their aspect ratio (height H/diameter D) is characteristically low. In small turbine vanes and blades, however, pin fins may also be located in the middle region of the airfoil. In this case, the aspect ratio can be quite large, usually obtaining values greater than 4. Heat transfer tests, which are conducted under atmospheric conditions for the cooling design of turbine vanes and blades, may overestimate the heat transfer coefficient of the pin-finned flow channel for such long pin fins. The fin efficiency of a long pin fin is almost unity in a low heat transfer situation as it would be encountered under atmospheric conditions, but can be considerably lower under high heat transfer conditions and for pin fins made of low thermal conductivity material. A series of tests with corresponding heat transfer models has been conducted in order to clarify the heat transfer characteristics of the long pin-finned flow channel. It is assumed that heat transfer coefficients can be predicted by the linear combination of two heat transfer equations, which were separately developed for the pin fin surface and for tubes in crossflow. To confirm the suggested combined equations, experiments have been carried out, in which the aspect ratio and the thermal conductivity of the pin were the test parameters. To maintain a high heat transfer coefficient for a long pin fin under high-pressure conditions, the heat transfer was augmented by adding a turbulence promoter on the pin-finned endwall surface. A corresponding equation that describes this situation has been developed. The predicted and measured values showed good agreement. In this paper, a comprehensive study on the heat transfer of a long pin-fin array will be presented.


Author(s):  
Pei-Xue Jiang ◽  
Zhi-Hui Li ◽  
Chen-Ru Zhao

This paper presents the experimental and numerical investigation results of the convection heat transfer of CO2 at supercritical pressures in a 0.0992 mm diameter vertical tube at various inlet Reynolds numbers, heat fluxes and flow directions. The effects of buoyancy and flow acceleration resulted from the dramatic properties variation were investigated. Results showed that the local wall temperature varied non-linearly for both upward and downward flow when the heat flux was high. The difference of the local wall temperature between upward flow and downward flow was very small when other test conditions were held the same, which indicates that for supercritical CO2 flowing in a mini tube as employed in this study, the buoyancy effect on the convection heat transfer was quite insignificant, and the flow acceleration induced by the axial density variation with temperature was the main factor that lead to the abnormal local wall temperature distribution at high heat fluxes. The predicted values using the LB low Reynolds number turbulence model correspond well with the measured data. Velocity profiles and turbulence kinetic energy near the wall varying along the tube generated by the numerical simulations were presented to develop a better understanding.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Denitsa Milanova ◽  
Ranganathan Kumar

The heat transfer characteristics of silica (SiO2) nanofluids at 0.5vol% concentration and particle sizes of 10nm and 20nm in pool boiling with a suspended heating Nichrome wire have been analyzed. The influence of acidity on heat transfer has been studied. The pH value of the nanosuspensions is important from the point of view that it determines the stability of the particles and their mutual interactions toward the suspended heated wire. When there is no particle deposition on the wire, the nanofluid increases critical heat flux (CHF) by about 50% within the uncertainty limits regardless of pH of the base fluid or particle size. The extent of oxidation on the wire impacts CHF, and is influenced by the chemical composition of nanofluids in buffer solutions. The boiling regime is further extended to higher heat flux when there is agglomeration on the wire. This agglomeration allows high heat transfer through interagglomerate pores, resulting in a nearly threefold increase in burnout heat flux. This deposition occurs for the charged 10nm silica particle. The chemical composition, oxidation, and packing of the particles within the deposition on the wire are shown to be the reasons for the extension of the boiling regime and the net enhancement of the burnout heat flux.


Sign in / Sign up

Export Citation Format

Share Document