Vibration Control of a Beam Embedded With an Electrorheological Fluid

Author(s):  
Tyler J. Selstad ◽  
Kambiz Farhang ◽  
David Chelidze

Abstract Electrorheological (ER) fluids are known to exhibit damping and stiffness properties which are highly dependent on the induced electrical field strength within the ER medium. Incorporation of ER fluid within a structural member then provides a means of stiffness and damping variation of the member. A structural member with embedded ER fluid is considered. Equations governing the axial and transverse motions of the member are reduced to a system of linear ordinary differential equations with time-varying coefficients. Application of the multiple time scales method results in amplitude-frequency relations. A control method is considered in which the effect of embedded ER fluid damping modulation using a simple harmonic excitation voltage on the parametric stability boundaries of the member is examined. Results indicate that the parametric stability boundaries can change effecting various modulation amplitudes and frequencies.

Author(s):  
Samuel F. Asokanthan ◽  
Xiao-Hui Wang ◽  
Seung-Hoon Baik

Torsional vibration control of a rotating mechanical system which incorporates a Hooke’s joint is investigated by pole assignment techniques. Linearized analytical models for the torsional system are established for the purposes of controller design. The resulting two-degree-of-freedom rotational system which contains time varying coefficients is parametrically excited due to an inherent non-linear velocity ratio across the Hooke’s joint. The controller is designed via full state feedback and observer based feedback in the transformed domain, using Lyapunov transformation. This transformation reduces the original time-varying system to a form suitable for controller design. A dual-system approach is employed to calculate the observer gain matrix for the time-varying system. Numerical simulation results show that the proposed control method is effective for suppressing torsional vibration of a Hooke’s joint driven system.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2922
Author(s):  
Christopher J. Bay ◽  
Rohit Chintala ◽  
Bryan P. Rasmussen

Control of energy systems in buildings is an area of expanding interest as the importance of energy efficiency, occupant health, and comfort increases. The objective of this study was to demonstrate the effectiveness of a novel predictive steady-state optimal control method in minimizing the economic costs associated with operating a building. Specifically, the cost of utility consumption and the cost of loss productivity due to occupant discomfort were minimized. This optimization was achieved through the use of steady-state predictions and component level economic objective functions. Specific objective functions were developed and linear models were identified from data collected from a building on Texas A&M University’s campus. The building consists of multiple zones and is serviced by a variable air volume, chilled water air handling unit. The proposed control method was then co-simulated with MATLAB and EnergyPlus to capture effects across multiple time-scales. Simulation results show improved comfort performance and decreased economic cost over the currently implemented building control, minimizing productivity loss and utility consumption. The potential for more serious consideration of the economic cost of occupant discomfort in building control design is also discussed.


2018 ◽  
Author(s):  
Yan Liang ◽  
◽  
Daniele J. Cherniak ◽  
Chenguang Sun

Eng ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 99-125
Author(s):  
Edward W. Kamen

A transform approach based on a variable initial time (VIT) formulation is developed for discrete-time signals and linear time-varying discrete-time systems or digital filters. The VIT transform is a formal power series in z−1, which converts functions given by linear time-varying difference equations into left polynomial fractions with variable coefficients, and with initial conditions incorporated into the framework. It is shown that the transform satisfies a number of properties that are analogous to those of the ordinary z-transform, and that it is possible to do scaling of z−i by time functions, which results in left-fraction forms for the transform of a large class of functions including sinusoids with general time-varying amplitudes and frequencies. Using the extended right Euclidean algorithm in a skew polynomial ring with time-varying coefficients, it is shown that a sum of left polynomial fractions can be written as a single fraction, which results in linear time-varying recursions for the inverse transform of the combined fraction. The extraction of a first-order term from a given polynomial fraction is carried out in terms of the evaluation of zi at time functions. In the application to linear time-varying systems, it is proved that the VIT transform of the system output is equal to the product of the VIT transform of the input and the VIT transform of the unit-pulse response function. For systems given by a time-varying moving average or an autoregressive model, the transform framework is used to determine the steady-state output response resulting from various signal inputs such as the step and cosine functions.


2021 ◽  
Vol 383 (1) ◽  
pp. 143-148
Author(s):  
Shadi Jafari ◽  
Mattias Alenius

AbstractOlfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.


2019 ◽  
Vol 11 (4) ◽  
pp. 1163 ◽  
Author(s):  
Melissa Bedinger ◽  
Lindsay Beevers ◽  
Lila Collet ◽  
Annie Visser

Climate change is a product of the Anthropocene, and the human–nature system in which we live. Effective climate change adaptation requires that we acknowledge this complexity. Theoretical literature on sustainability transitions has highlighted this and called for deeper acknowledgment of systems complexity in our research practices. Are we heeding these calls for ‘systems’ research? We used hydrohazards (floods and droughts) as an example research area to explore this question. We first distilled existing challenges for complex human–nature systems into six central concepts: Uncertainty, multiple spatial scales, multiple time scales, multimethod approaches, human–nature dimensions, and interactions. We then performed a systematic assessment of 737 articles to examine patterns in what methods are used and how these cover the complexity concepts. In general, results showed that many papers do not reference any of the complexity concepts, and no existing approach addresses all six. We used the detailed results to guide advancement from theoretical calls for action to specific next steps. Future research priorities include the development of methods for consideration of multiple hazards; for the study of interactions, particularly in linking the short- to medium-term time scales; to reduce data-intensivity; and to better integrate bottom–up and top–down approaches in a way that connects local context with higher-level decision-making. Overall this paper serves to build a shared conceptualisation of human–nature system complexity, map current practice, and navigate a complexity-smart trajectory for future research.


2021 ◽  
Vol 40 (9) ◽  
pp. 2139-2154
Author(s):  
Caroline E. Weibull ◽  
Paul C. Lambert ◽  
Sandra Eloranta ◽  
Therese M. L. Andersson ◽  
Paul W. Dickman ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1392
Author(s):  
David Gallina ◽  
G. M. Pastor

Structural disorder has been shown to be responsible for profound changes of the interaction-energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures. Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large basins of attraction from which the higher-energy metastable configurations are separated by only small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes with a large number of low-energy local minima separated by relatively large energy barriers. Consequently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics that is funnelled towards the global minimum, whereas the latter show a time evolution involving multiple time scales and trapping which is reminiscent of glasses. Although these general trends have been clearly established, a detailed assessment of the extent of these effects in specific nanostructure realizations remains elusive. The present study quantifies the disorder-induced changes in the interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a function of the magnetic configuration of the ensembles. Representative examples of weakly-disordered square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity graphs. The correlations between the characteristics of the energy landscapes and the Markovian dynamics of the various magnetic nanostructures are quantified by calculating the field-free relaxation time evolution after either magnetic saturation or thermal quenching and by comparing them with the corresponding averages over a large number of structural arrangements. Common trends and system-specific features are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document