Implementation of the Wideband Autoparametric Vibration Absorber on a Flexible Structure

Author(s):  
Ashwin Vyas ◽  
Anil K. Bajaj ◽  
Arvind Raman

The dynamics of a resonantly excited thin cantilever with an active controller are investigated experimentally. The controller mimics a passive wideband absorber discussed in [1]. PZT patches are bonded to both sides of the beam to actuate it, while an electromagnetic shaker drives the beam near resonance. An active controller consisting of an array of uncoupled controllers is developed, such that the governing equations for the controller are quadratically coupled to the resonating system. The control signal, in terms of the motion of the controllers, is quadratically nonlinear. The controller is implemented using a modelling software and a controller hardware board. Two sets of experiments are performed: one with a constant excitation frequency and the other with a linearly varying excitation frequency at a slow rate (non-stationary excitation). The experimental results verify the analysis presented for the passive wideband autoparametric vibration absorber. They also demonstrate the effectiveness of the absorber in reducing the response amplitude of structures, and its robustness to frequency mistuning.

Author(s):  
Philip Bonello ◽  
Michael J Brennan ◽  
Stephen J Elliott ◽  
Julian F.V Vincent ◽  
George Jeronimidis

An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency, enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned–pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.


2003 ◽  
Vol 9 (1-2) ◽  
pp. 209-234 ◽  
Author(s):  
Osama N. Ashour ◽  
Ali H. Nayfeh

We investigate a nonlinear active vibration absorber to control the vibrations of plates. The absorber is based on the saturation phenomenon associated with dynamical systems with quadratic nonlinearities and a two-to-one internal resonance. The technique is implemented by coupling a second-order controller with the plate's response through a sensor and an actuator. Energy is exchanged between the primary structure and the controller and, near resonance, the plate's response saturates to a small value. Numerical as well as experimental results are presented for a cantilever rectangular plate. For the numerical studies, finite-element methods as well as modal analysis are implemented. The commercially available software ABAQUS is used in the finite-element analysis together with a user-provided subroutine to model the controller. For the experimental studies, the plate is excited using a dynamic shaker. Strain gages are used as sensors, while piezoelectric ceramic patches are used as actuators. The control technique is implemented using a digital signal processing board and a modeling software. Both numerical and experimental results show that the control strategy is very effective.


1974 ◽  
Vol 96 (3) ◽  
pp. 983-987
Author(s):  
J. E. Sneckenberger ◽  
H. W. Butler ◽  
In-Meei Neou

Analysis of the Gyroscopic Vibration Absorber (GVA) is made with a view to improve its effectiveness as a linear synchronous absorber. Theoretical consideration reveals that much of the nonlinearity of the governing equations of motion of the structure-absorber system involves terms containing an absorber parameter IE. The experimental development of a GVA for which this parameter is made to vanish by appropriate proportionment of certain absorber moments of inertia is shown to be feasible. Laboratory tests examining the nulling potential of this experimental GVA show that linear synchronization of the antiresonant frequency to the speed of the GVA rotor can be obtained for a wider range of excitation frequencies than when the absorber parameter is not equal to zero. Comparison of the experimental results with analytical predictions is also favorable.


Author(s):  
Shafic S. Oueini ◽  
Char-Ming Chin ◽  
Ali H. Nayfeh

Abstract We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode (plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We obtain an approximate solution to the governing equations using the method of multiple scales and show that the system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic responses.


1994 ◽  
Vol 29 (4) ◽  
pp. 127-132 ◽  
Author(s):  
Naomi Rea ◽  
George G. Ganf

Experimental results demonstrate bow small differences in depth and water regime have a significant affect on the accumulation and allocation of nutrients and biomass. Because the performance of aquatic plants depends on these factors, an understanding of their influence is essential to ensure that systems function at their full potential. The responses differed for two emergent species, indicating that within this morphological category, optimal performance will fall at different locations across a depth or water regime gradient. The performance of one species was unaffected by growth in mixture, whereas the other performed better in deep water and worse in shallow.


2021 ◽  
Vol 40 (1) ◽  
pp. 551-563
Author(s):  
Liqiong Lu ◽  
Dong Wu ◽  
Ziwei Tang ◽  
Yaohua Yi ◽  
Faliang Huang

This paper focuses on script identification in natural scene images. Traditional CNNs (Convolution Neural Networks) cannot solve this problem perfectly for two reasons: one is the arbitrary aspect ratios of scene images which bring much difficulty to traditional CNNs with a fixed size image as the input. And the other is that some scripts with minor differences are easily confused because they share a subset of characters with the same shapes. We propose a novel approach combing Score CNN, Attention CNN and patches. Attention CNN is utilized to determine whether a patch is a discriminative patch and calculate the contribution weight of the discriminative patch to script identification of the whole image. Score CNN uses a discriminative patch as input and predict the score of each script type. Firstly patches with the same size are extracted from the scene images. Secondly these patches are used as inputs to Score CNN and Attention CNN to train two patch-level classifiers. Finally, the results of multiple discriminative patches extracted from the same image via the above two classifiers are fused to obtain the script type of this image. Using patches with the same size as inputs to CNN can avoid the problems caused by arbitrary aspect ratios of scene images. The trained classifiers can mine discriminative patches to accurately identify some confusing scripts. The experimental results show the good performance of our approach on four public datasets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hossein Ahmadvand ◽  
Fouzhan Foroutan ◽  
Mahmood Fathy

AbstractData variety is one of the most important features of Big Data. Data variety is the result of aggregating data from multiple sources and uneven distribution of data. This feature of Big Data causes high variation in the consumption of processing resources such as CPU consumption. This issue has been overlooked in previous works. To overcome the mentioned problem, in the present work, we used Dynamic Voltage and Frequency Scaling (DVFS) to reduce the energy consumption of computation. To this goal, we consider two types of deadlines as our constraint. Before applying the DVFS technique to computer nodes, we estimate the processing time and the frequency needed to meet the deadline. In the evaluation phase, we have used a set of data sets and applications. The experimental results show that our proposed approach surpasses the other scenarios in processing real datasets. Based on the experimental results in this paper, DV-DVFS can achieve up to 15% improvement in energy consumption.


1993 ◽  
Vol 8 (9) ◽  
pp. 2344-2353 ◽  
Author(s):  
J-M. Berthelot ◽  
Souda M. Ben ◽  
J.L. Robert

The experimental study of wave attenuation in concrete has been achieved in the case of the propagation of plane waves in concrete rods. Different mortars and concretes have been investigated. A transmitter transducer coupled to one of the ends of the concrete rod generates the propagation of a plane wave in the rod. The receiver transducer, similar to the previous one, is coupled to the other end of the rod. The experimental results lead to an analytical expression for wave attenuation as function of the concrete composition, the propagation distance, and the wave frequency.


Robotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 68
Author(s):  
Lei Shi ◽  
Cosmin Copot ◽  
Steve Vanlanduit

In gaze-based Human-Robot Interaction (HRI), it is important to determine human visual intention for interacting with robots. One typical HRI interaction scenario is that a human selects an object by gaze and a robotic manipulator will pick up the object. In this work, we propose an approach, GazeEMD, that can be used to detect whether a human is looking at an object for HRI application. We use Earth Mover’s Distance (EMD) to measure the similarity between the hypothetical gazes at objects and the actual gazes. Then, the similarity score is used to determine if the human visual intention is on the object. We compare our approach with a fixation-based method and HitScan with a run length in the scenario of selecting daily objects by gaze. Our experimental results indicate that the GazeEMD approach has higher accuracy and is more robust to noises than the other approaches. Hence, the users can lessen cognitive load by using our approach in the real-world HRI scenario.


1948 ◽  
Vol 21 (4) ◽  
pp. 853-859
Author(s):  
R. F. A. Altman

Abstract As numerous investigators have shown, some of the nonrubber components of Hevea latex have a decided accelerating action on the process of vulcanization. A survey of the literature on this subject points to the validity of certain general facts. 1. Among the nonrubber components of latex which have been investigated, certain nitrogenous bases appear to be most important for accelerating the rate of vulcanization. 2. These nitrogen bases apparently occur partly naturally in fresh latex, and partly as the result of putrefaction, heating, and other decomposition processes. 3. The nitrogen bases naturally present in fresh latex at later stages have been identified by Altman to be trigonelline, stachhydrine, betonicine, choline, methylamine, trimethylamine, and ammonia. These bases are markedly active in vulcanization, as will be seen in the section on experimental results. 4. The nitrogenous substances formed by the decomposition processes have only partly been identified, on the one hand as tetra- and pentamethylene diamine and some amino acids, on the other hand as alkaloids, proline, diamino acids, etc. 5. It has been generally accepted that these nitrogenous substances are derived from the proteins of the latex. 6. Decomposition appears to be connected with the formation of a considerable amount of acids. 7. The production of volatile nitrogen bases as a rule accompanies the decomposition processes. These volatile products have not been identified. 8. The active nitrogen bases, either already formed or derived from complex nitrogenous substances, seem to be soluble in water but only slightly soluble in acetone.


Sign in / Sign up

Export Citation Format

Share Document