scholarly journals A Port-Based Agent Approach to Guiding Concept Generation for Customizing Modular Varieties

Author(s):  
Dongxing Cao ◽  
Karthik Ramani ◽  
Ming Wang Fu ◽  
Runli Zhang

As the description of design requirements at the earlier design stage is inaccurate and vague, it is difficult to figure out functional structure of a product and make sense product configuration. Therefore, it plays an important role to formally represent the process of design for product development in the conceptual design stage. Furthermore, port, as the location of intended interaction, is crucial to capture component concept and realize conceptual design for multi-solution generation. Agent is considered as an effective approach to collaboratively implementing design problem solving and reasoning. Combining both port and agent may be employed to generate new concepts of the product in order to customize product scheme varieties. In this paper, the product module attributes are firstly described. The objective is to implement modeling of design process for obtaining system new concepts to guide multi-solution generation. Secondly, an effective approach to decomposing design process is presented to describe the process of structure generations and product decomposition by formal representation. According to properties of modularity for product development and component connections, we can calculate the number of component connections and density of components. In addition, product module division and coupling degree analysis are conducted, and coupling degrees are calculated by considering the correspondence ratio and the cluster independence. A port-based knowledge building process is described for functional modeling. A port-agent collaborative design framework is given and describes different agent functions to help designers to obtain new design schemes. Finally, a case study is presented to describe the modeling process of conceptual design.

Author(s):  
Cristian Iorga ◽  
Alain Desrochers

The expansion of the markets corroborated with product customization and short time to launch the product have led to new levels of competition among product development companies. To be successful in the globalization of the markets and to enable the evaluation and validation of products, companies have to develop methodologies focused on lifecycle analysis and reduction of product variation to obtain both quality and robustness of products. Keywords: Modeling, Evaluation, Validation, Design ProcessThis paper proposes a new design process methodology that unifies theoretical results of modeling stage and empirical findings obtained from the validation stage. The evaluations and validations of engineering design are very important and they have a high influence on product performances and their functionality, as well on the customer perceptions.Given that most companies maintain the confidentiality of their product development processes and that the existing literature does not provide more detailed aspects of this field, the proposed methodology will represent a technical and logistical support intended for students or engineers involved in academic as well as industrial projects.A generic methodology will be refined based on a new approach that will take into consideration the specification types (quantitative or qualitative), the design objectives and the product types: new/improved, structural/esthetic. Hence the new generic methodology will be composed of specific product validation algorithms taking into account the above considerations. At the end of this paper, the improvements provided by the proposed methodology into the design process will be shown in the context of the engineering student capstone projects at the Université de Sherbrooke.


Author(s):  
Aybüke Aurum ◽  
Oya Demirbilek

As we enter the third millennium, many organizations are forced to constantly pursue new strategies to differentiate themselves from their competitors. Examples include offering customers streams of new products and services, as well as continuously seeking to improve productivity, services and the effectiveness of product design, development and manufacturing processes. Consequently, new concepts, approaches and tools are emerging quickly as the globalization trend expands across the world. Product complexity, pressures to reduce production cycle time, the need for stakeholders’ contributions and multinational company as well as consumer requirements create the demand for sophisticated multi-designer collaborative virtual environments where product design can be shared and acted upon (Kunz, Christiansen, Cohen, Jin, & Levitt, 1998; Ragusa & Bochanek, 2001; Anderson, Esser & Interrante, 2003). Thus, researchers and practitioners recognize that collaboration is an essential aspect of contemporary, professional product design and development activities. The design process is collaborative by nature. Collaborative design fosters participation of stakeholders in any form during the design process. The design of a successful product is dependent on integrating information and experiences from a number of different knowledge domains. These domains include consumer (end-user) requirements, industrial designers’ professional design skills as well as manufacturers’ needs. This results in a product that performs at a functional as well as aesthetic level and that can be manufactured by the right process at the right price. End-user involvement is essential to product design, since products that do not achieve consumer satisfaction or meet consumer needs are doomed to fail (Schultz, 2001). Accurate understanding of user needs is an essential aspect in developing commercially successful products (Achilladelis, 1971). Hence, it is very important for industrial designers to gather the end-users’ needs and incorporate them into their designs. The involvement of manufacturers in the initial stages of the domestic product design process can lead to a dramatic reduction in a product’s development lifecycle time, also facilitating the coordination of the purchasing and engineering functions (Bochanek & Ragusa, 2001; Demirbilek, 2001). The increasing complexity of artifacts and the globalization of product development are changing research methodologies and techniques. A prime example of this includes the application of a virtual collaborative design environment (VCDE) for product design and manufacturing. This article focuses on the concept of virtual collaborative design. It describes a research effort to investigate cross-cultural collaboration in product development using online applications for domestic product design. The aim of this research is to investigate issues related to the virtual collaborative design (VCD) process, and to bring an understanding of stakeholder needs during the collaborative design process as well as to improve the relationships between end-users, designers and manufacturers. The article presents findings based on a survey study conducted with four different potential stakeholders: representatives of consumers, software designers, industrial designers and manufacturers.


Author(s):  
Amir Mirzadeh Phirouzabadi

Nowadays,improving the quality of products, reducing cost and meeting customer’srequirements are necessary to shorten the time of new product development(NPD). NPD is used to describe the complete process of bringing a new product to market and conceptual design process(CDP) is at its early stage and has mostly changed from passive respond toaggressive one. Thus, this study proposed a practical method for CDP in NPDthrough three phases as Converting customers’ requirements to product specifications,Generating and selecting of concepts and Testing and finalizing the concepts byusing some different management-engineering techniques. Firstly, this papertried to prioritize customer’s requirements related to product by AHP (AnalyticHierarchy Process) and convert them to engineering parameters of TRIZ (Theoryof Inventive Problem Solving) in order to define the inventive principals.Next, based on QFD (Quality Function Deployment), we measured the weight valuesof inventive principals. Finally, as FMEA (Failure Mode and Effect Analysis)can analyze the weight values and reduce the sequential risk, then finalconceptual design was generated. At the end, a medical glasses was used as acase study of innovative design to validate the method and explain how thestrategies of this research for CDP.


Author(s):  
Manish Verma ◽  
Hui Dong ◽  
William H. Wood

Design for Manufacture (DfM) tends to explore only a small space of possible designs toward improving manufacturability. By focusing primarily on detailed geometry, DfM tends to recommend incremental changes. This paper presents a methodology that begins at the conceptual design stage, applying functional modeling to the generation of design configurations. These functional abstractions are merged with real part geometry toward generating potentially manufacturable design skeletons. The direct connection from function to manufacturable form afforded by this method allows the designer to make better-informed design decisions at the earliest stages of the design process.


2014 ◽  
Vol 548-549 ◽  
pp. 1998-2002 ◽  
Author(s):  
M.U. Rosli ◽  
M.K.A. Ariffin ◽  
S.M. Sapuan ◽  
S. Sulaiman

.Amid the fierce rising competition in the market, accelerating the problem solving and decision making process have become major issues in product design especially in conceptual design stage. For years, Theory of Inventive Problem Solving (TRIZ) has been extensively applied in problem solving. In this paper, Analytical Hierarchy Process (AHP) was proposed to strengthen three major steps in TRIZ methodology namely as problem definition, root cause identification and solution generation. The integration was then structured in the form of computer-based system. The integration, application and software in AHP and TRIZ method have been discussed in this paper. This proposed support system not only provided evidence that TRIZ methodologies improved by the support of AHP and also aided the designers in early design phase such as concept, process and material selection.


Author(s):  
Rong-Yuan Jou

A freezing chucker is a clamp-less mechanism of fixture for easy broken egg-shell, clay, and other ferrous/nonferrous materials. Typical structure of this mechanism includes a top plate for freezing workpieces, a body with specially designed channels for the coolant flows, and a bottom plate to fasten on the table of other machine. Just by a small amount of liquids on the top surface and by rapidly cool down to 253K, parts can be frozen stationary on the top plate surface and can conduct precision machining on it. There are four steps to design a new freeze chucker by the engineering design process: planning and clarifying the task; conceptual design; embodiment design; detailed design. Some useful tools from the Quality Function Deployment (QFD) technique and the Theory of Inventive Problem Solving (TRIZ) method are used in this design process. Eight concept designs are generated by the conceptual design work and the final design of channel with transverse ribs is selected by decision matrix technique during embodiment design and detailed design stage. This final design is evaluated by numerical modeling of the COMSOL MULTIPHYSICS 3.2 finite-element based package. Performances such as the temperature distribution of top-plate surface temperature and the lowest temperature of a freezing chucker are shown. Numerical results show the success of the innovative channel design by this inventive design process using TRIZ methodology.


Author(s):  
Tarang Parashar ◽  
Katie Grantham Lough ◽  
Robert B. Stone

This paper presents a part count tool that automates the consideration of manufacturing cost during the conceptual design phase by predicting part count for a particular product concept. With an approximate number of parts per product in the conceptual design phase, the designer can estimate the cost associated with the product. On the basis of the cost, the designer can make changes according to budget requirements. The part count tool will also aid in ranking the design concepts by number of components for a product. This tool utilizes existing automated concept generation algorithms to generate the design concepts. It extracts the available data from the Missouri S&T Design Repository to compute an average number of parts per component type in the repository and then calculates an average part count for new concepts. This data can subsequently be used by designers to estimate product cost. The part count tool also uses an algorithm to determine how to connect two non compatible components through the addition of mutually compatible components. While emphasis is placed on the average parts per product in evaluating designs, the overall functional requirement of the product is also considered.


Author(s):  
Senthil Chandrasegaran ◽  
Sriram Karthik Badam ◽  
Zhenpeng Zhao ◽  
Niklas Elmqvist ◽  
Lorraine Kisselburgh ◽  
...  

Sketching for conceptual design has traditionally been performed on paper. Recent computational tools for conceptual design have leveraged the availability of hand-held computing devices and web-based collaborative platforms. Further, digital sketching interfaces have the added advantages of storage, duplication, and sharing on the web. We have developed skWiki, a tool that enables collaborative sketching on digital tablets using a web-based framework. We evaluate skWiki in two contexts, (a) as a collaborative ideation tool, and (b) as a design research tool. For this evaluation, we perform a longitudinal study of an undergraduate design team that used skWiki over the course of the concept generation and development phase of their course project. Our analysis of the team’s sketching activity indicated instances of lateral and vertical transformation between participants, indicating collaborative exploration of the breadth and depth of the design space. Using skWiki for this evaluation also demonstrated it to be an effective research tool to investigate such collaborative design processes.


Author(s):  
Ryan R. Dalling ◽  
B. Levi Haupt ◽  
Robert H. Todd

Previous research and publications at Brigham Young University have established the new positive engagement continuously variable transmission (PECVT) family of continuously variable transmissions (CVTs). Various embodiments of PECVTs have been identified and surveyed; resulting in the identification of the behavior termed the non-integer tooth problem. Additional research has been conducted to further explore the non-integer tooth problem and identify a feasible solution to the problem through the use of a product development method. This publication will address the conceptual design phase of the product development process for a PECVT. This will include: the identification of the operating conditions of a PECVT, i.e. further detail of the non-integer tooth problem, identification of required characteristics for a solution, design specifications, concept generation, concept evaluation, and concept selection. The conceptual design phase will result in a conceptual solution which will satisfy the identified characteristic requirement and designs specifications.


Sign in / Sign up

Export Citation Format

Share Document