Comparing Legged Locomotion With a Sprung-Knee and Telescoping-Spring When Hip Torque is Applied

Author(s):  
Nikhil Rao ◽  
Zhuohua Shen ◽  
Justin Seipel

Legged locomotion has been a subject of study for many years. However, the role of the knee in whole-body dynamics of locomotion is not well understood, especially for non-conservative dynamics. Based upon a hip actuated Spring-Loaded Inverted Pendulum (Hip-actuated SLIP) model, we develop a more human-like, two-segment leg model with a pin-jointed springy knee, to see what effects a knee has in the context of an applied hip torque. Overall, we find that the governing equations for the two-segment (knee) version have a distinct structure when compared to the telescoping version of SLIP. The two-segment model with a knee spring influences forces acting on the mass center in a more complex way than a telescoping spring. While a wide variation of behavior is possible for the two-segment model, here we focus on comparing the dynamics for a special case when the knee spring resting angle is 90°. For this particular choice of resting knee angle we find that the knee version of actuated SLIP can have similar locomotion dynamics to the telescoping version of actuated SLIP. This result provides one explanation for how animals and robots with multi-segmented legs could produce overall center-of-mass dynamics that are similar to models with telescoping legs. Nonetheless, despite overall similarities for this special case, small differences in the stability of locomotion are still observed. In particular, we find that the knee version tends to be slightly more stable than the telescoping SLIP in terms of the allowable size of perturbations, while requiring higher input power.

Author(s):  
Timothy Sullivan ◽  
Justin Seipel

The Spring Loaded Inverted Pendulum (SLIP) model was developed to describe center of mass movement patterns observed in animals, using only a springy leg and a point mass. However, SLIP is energy conserving and does not accurately represent any biological or robotic system. Still, this model is often used as a foundation for the investigation of improved legged locomotion models. One such model called Torque Damped SLIP (TD-SLIP) utilizes two additional parameters, a time dependent torque and dampening to drastically increase the stability. Forced Damped SLIP (FD-SLIP), a predecessor of TD-SLIP, has shown that this model can be further simplified by using a constant torque, instead of a time varying torque, while still maintaining stability. Using FD-SLIP as a base, this paper explores a leg placement strategy using a simple PI controller. The controller takes advantage of the fact that the energy state of FD-SLIP is symmetric entering and leaving the stance phase during steady state conditions. During the flight phase, the touch down leg angle is adjusted so that the energy dissipation due to dampening, during the stance phase, compensates for any imbalance of energy. This controller approximately doubles the region of stability when subjected to velocity perturbations at touchdown, enables the model to operate at considerably lower torque values, and drastically reduces the time required to recover from a perturbation, while using less energy. Finally, the leg placement strategy used effectively imitates the natural human response to velocity perturbations while running.


2021 ◽  
pp. 1-18
Author(s):  
Young Hun Lee ◽  
Hyunyong Lee ◽  
Hansol Kang ◽  
Jun Hyuk Lee ◽  
Ji Man Park ◽  
...  

Abstract In legged locomotion, the contact force between a robot and the ground plays a crucial role in balancing the robot. However, in quadrupedal robots, general whole-body controllers generate feed-forward force commands without considering the actual torque or force feedback. This paper presents a whole-body controller by using the actual joint torque measured from a torque sensor, which enables the quadrupedal robot to demonstrate both dynamic locomotion and reaction to external disturbances. We compute external joint torque using the measured joint torque and the robot's dynamics, and then transform this to the moment of the center of mass (CoM). Using the computed CoM moment, the moment-based impedance controller distributes a feed-forward force corresponding to the desired moment of the CoM to stabilize the robot's balance. Furthermore, to recover balance, the CoM motion is generated using capture point-based stepping control and zero moment point trajectory. The proposed whole-body controller was tested on a quadrupedal robot, named AiDIN-VI. Locomotive abilities on uneven terrains and slopes and in the presence of external disturbances are verified through experiments.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2971 ◽  
Author(s):  
Xuanyang Shi ◽  
Junyao Gao ◽  
Yizhou Lu ◽  
Dingkui Tian ◽  
Yi Liu

Biped robots are similar to human beings and have broad application prospects in the fields of family service, disaster rescue and military affairs. However, simplified models and fixed center of mass (COM) used in previous research ignore the large-scale stability control ability implied by whole-body motion. The present paper proposed a two-level controller based on a simplified model and whole-body dynamics. In high level, a model predictive control (MPC) controller is implemented to improve zero moment point (ZMP) control performance. In low level, a quadratic programming optimization method is adopted to realize trajectory tracking and stabilization with friction and joint constraints. The simulation shows that a 12-degree-of-freedom force-controlled biped robot model, adopting the method proposed in this paper, can recover from a 40 Nm disturbance when walking at 1.44 km/h without adjusting the foot placement, and can walk on an unknown 4 cm high stairs and a rotating slope with a maximum inclination of 10°. The method is also adopted to realize fast walking up to 6 km/h.


2020 ◽  
Vol 10 (15) ◽  
pp. 5088
Author(s):  
Silvia Maria Marchese ◽  
Veronica Farinelli ◽  
Francesco Bolzoni ◽  
Roberto Esposti ◽  
Paolo Cavallari

This review aims to highlight the important contribution of the cerebellum in the Anticipatory Postural Adjustments (APAs). These are unconscious muscular activities, accompanying every voluntary movement, which are crucial for optimizing motor performance by contrasting any destabilization of the whole body and of each single segment. Moreover, APAs are deeply involved in initiating the displacement of the center of mass in whole-body reaching movements or when starting gait. Here we present literature that illustrates how the peculiar abilities of the cerebellum i) to predict, and contrast in advance, the upcoming mechanical events; ii) to adapt motor outputs to the mechanical context, and iii) to control the temporal relationship between task-relevant events, are all exploited in the APA control. Moreover, recent papers are discussed which underline the key role of cerebellum ontogenesis in the correct maturation of APAs. Finally, on the basis of a survey of animal and human studies about cortical and subcortical compensatory processes that follow brain lesions, we propose a candidate neural network that could compensate for cerebellar deficits and suggest how to verify such a hypothesis.


Author(s):  
Zhuohua Shen ◽  
Justin Seipel

The concept of passive dynamic walking and running [5] has demonstrated that a simple passive model can represent the dynamics of whole-body human locomotion. Since then, many passive models were developed and studied: [3,1,2,11]. The later developed Spring-Loaded Inverted Pendulum (SLIP) [1, 4, 11, 2] exhibits stable center of mass (CoM) motions just by resetting the landing angle at each touch down. Also, compared to SLIP, a SLIP-like model with simple flight leg control is better at resisting perturbations of the angle of velocity but not the magnitude [11, 2, 7]. Energy conserving models explain much about whole-body locomotion. Recently, there has been investigations of modified spring-mass models capable of greater stability, like that of animals and robots [9, 10, 8, 12]. Inspired by RHex [6], the Clock-Torqued Spring-Loaded Inverted Pendulum (CT-SLIP) model [9] was developed, and has been used to explain the robust stability of animal locomotion [12]. Here we present a model (mechanism) simpler than CT-SLIP called Forced-Damped SLIP (FD-SLIP) that can attain full asymptotically stability of the CoM during locomotion, and is capable of both walking and running motions. The FD-SLIP model, having fewer parameters, is more accessible and easier to analyze for the exploration and discovery of principles of legged locomotion.


Author(s):  
Justin E. Seipel

Back-bending in the sagittal plane is common in many animals during legged locomotion and could be useful for robots. However, to our knowledge, there exists no analytical mechanistic model of sagittal-plane back bending legged locomotion of quadrupeds. Such a mechanistic model and knowledge derived from it is expected to enable direct analysis and insight into back bending locomotion and can be applied to the study of biomechanics or the design of robots. Here a whole-body mechanistic model is developed and governing equations of motion are derived to provide insight into the mathematical structure of the system dynamics. The model is energy conserving, consisting of massless elastic legs pinned to two body segments. The two body segments are pin-joined together with a rotational spring. The massless legs are returned to a resting angle relative to the body during swing phase. We discover: 1) Whole-body configuration variables simplify the resulting equations of motion. 2) The sagittal-plane back-bending two-segment model of legged locomotion yields stable periodic gaits.


Author(s):  
Richard R. Neptune ◽  
Craig P. McGowan ◽  
Allison L. Hall

The regulation of whole-body angular momentum is essential for maintaining dynamic balance during human walking and appears to be tightly controlled during normal and pathological movement (e.g., [1, 2]). The primary mechanism to regulate angular momentum is muscle force generation, which accelerates the body segments and generates ground reaction forces that alter angular momentum about the body’s center-of-mass to restore and maintain dynamic balance. Previous modeling studies have shown the ankle plantarflexors are important contributors to the anterior/posterior, vertical and medial/lateral ground reaction forces during human walking [3, 4], and therefore appear critical to regulating angular momentum and maintaining dynamic balance during walking.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


Sign in / Sign up

Export Citation Format

Share Document