Compensating Inertia Forces During Human Load Carrying Using a Motorized Second Spine

Author(s):  
Joon-Hyuk Park ◽  
Xin Jin ◽  
Sunil K. Agrawal

This study focuses on how the inertia force of a backpack induced by human walking can be compensated by active load modulation through a Second Spine, a device that provides an alternate pathway to transfer loads from the shoulder to the pelvis. Human walking induces periodic vertical acceleration of the upper body. A backpack worn on the upper body undergoes this same acceleration. Inertia force is induced by this acceleration and the human body has to sustain this motion and provide necessary energy. Based on this knowledge and our previous studies on a passive Second Spine, we present studies on a motorized Second Spine that can actively modulate the vertical motion of a backpack such that the inertia forces can be reduced. This is realized by real-time sensing and actuation so that the backpack is kept inertially fixed. The performance of such a device was evaluated on an instrumented test-bed using an Instron machine, showing results in good agreement with simulation. It was shown that the backpack motion can be made nearly stationary with respect to the ground by active modulation using motors and the inertia force is reduced.

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Joon-Hyuk Park ◽  
Xin Jin ◽  
Sunil K. Agrawal

This study presents the development of second spine, an upper body assistive device for human load carriage. The motivation comes from reducing musculoskeletal injuries caused by carrying a heavy load on the upper body. Our aim was to design a wearable upper body device that can prevent musculoskeletal injuries during human load carriage by providing a secondary load pathway—second spine—to transfer the loads from shoulders to pelvis while also allowing a good range of torso motion to the wearer. Static analysis of the backpack and the second spine was first performed to investigate the feasibility of our concept design. The development of second spine had two considerations: load distribution between shoulders and pelvis, and preserving the range of torso motion. The design was realized using load bearing columns between the shoulder support and hip belt, comprising multiple segments interconnected by cone-shaped joints. The performance of second spine was evaluated through experimental study, and its biomechanical effects on human loaded walking were also assessed. Based on the findings from second spine evaluation, we proposed the design of a motorized second spine which aims to compensate the inertia force of a backpack induced by human walking through active load modulation. This was achieved by real-time sensing of human motion and actuating the motors in a way that the backpack motion is kept nearly inertially fixed. Simulation study was carried out to determine the proper actuation of motors in response to the human walking kinematics. The performance of motorized second spine was evaluated through an instrumented test-bed using Instron machine. Results showed a good agreement with simulation. It was shown that the backpack motion can be made nearly stationary with respect to the ground which can further enhance the effectiveness of the device in assisting human load carriage.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Vimala Manivasakan ◽  
Govindarajan Sumathi

A theoretical investigation of the laminar squeeze flow of a couple-stress fluid between a flat circular static disk and an axisymmetric curved circular moving disk has been carried out using modified lubrication theory and microcontinuum theory. The combined effects of fluid inertia forces, curvature of the disk and non-Newtonian couple stresses on the squeeze film behavior are investigated analytically. Each of these effects and their combinations show a significant enhancement in the squeeze film behavior, and these are studied through their effects on the squeeze film pressure and the load carrying capacity of the fluid film as a function of time. Two different forms of the gapwidth between the disks have been considered, and the results have been shown to be in good agreement with the existing literature.


Author(s):  
Joon-Hyuk Park ◽  
Paul Stegall ◽  
Sunil K. Agrawal ◽  
Shridhar Yarlagadda ◽  
John Tierney ◽  
...  

This paper presents a wearable upper body suit designed to assist in human load carriage. The two functions of the suit are: (i) load distribution between the shoulders and the waist, and (ii) reduction of the dynamic load on the waist during walking. These are achieved through two cable driven modules — passive and active — within a custom fitted shirt integrated with motion/force sensors, actuators, and a real time controller. The load distribution between the shoulders and the waist is achieved through the load bearing columns connecting the shoulder pads and the waist belt whose load bearing capacity is modulated by a nominal cable tension in the passive module via a ratchet mechanism. The dynamic load is reduced in addition in the active module by modulating the cable tension via external actuator. Mathematical model of the system is presented and a state feedback controller is designed. Simulation study was performed to investigate the system response under different disturbance conditions as a result of vertical motion of the waist during human walking. Experiment evaluation of the suit was performed with a subject walking on a treadmill while carrying a backpack load. The results show that the developed suit can transfer the load from the shoulders to the waist as well as reduce the dynamic load induced during human walking. This can potentially reduce the energy expenditure and the risk of musculoskeletal injuries associated with human load carriage.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Jeffrey Chi Wai Lee ◽  
Christy Yan Yu Leung ◽  
Mang Hin Kok ◽  
Pak Wai Chan

A comparison was made of two eddy dissipation rate (EDR) estimates based on flight data recorded by commercial flights. The EDR estimates from real-time data using the National Center for Atmospheric Research (NCAR) Algorithm were compared with the EDR estimates derived using the Netherlands Aerospace Centre (NLR) Algorithm using quick assess recorder (QAR) data. The estimates were found to be in good agreement in general, although subtle differences were found. The agreement between the two algorithms was better when the flight was above 10,000 ft. The EDR estimates from the two algorithms were also compared with the vertical acceleration experienced by the aircraft. Both EDR estimates showed good correlation with the vertical acceleration and would effectively capture the turbulence subjectively experienced by pilots.


2020 ◽  
Vol 327 ◽  
pp. 03004
Author(s):  
D. Santana Sanchez ◽  
A. Mostafa

The present paper discusses the design analysis and limitations of the steering system of a buggy. Many geometrical and performance characteristics of the designed steering system were considered to address the kinematic constraints and load carrying capacity of the steering elements. Ackremann geometry approach was used to assess the limiting steering angle, while Lewis bending formula with the inclusion of dynamic effects was employed to characterise the flexural properties of the rack and pinion steering system. Analytical results were numerically verified using ABAQUS/Explicit nonlinear finite element (FE) package. Good agreement has been achieved between analytical and numerical results in predicting the flexural behaviour of the steering rack and pinion system.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 6218-6223 ◽  
Author(s):  
W. HOU ◽  
Z. WANG ◽  
L. ZHAO ◽  
G. LU ◽  
D. SHU

This paper is concerned with the load-carrying capacities of a circular sandwich panel with metallic foam core subjected to quasi-static pressure loading. The analysis is performed with a newly developed yield criterion for the sandwich cross section. The large deflection response is estimated by assuming a velocity field, which is defined based on the initial velocity field and the boundary condition. A finite element simulation has been performed to validate the analytical solution for the simply supported cases. Good agreement is found between the theoretical and finite element predictions for the load-deflection response.


2016 ◽  
Vol 83 (5) ◽  
Author(s):  
Brian Nyvang Legarth ◽  
Qingda Yang

Failure in elastic dual-phase materials under transverse tension is studied numerically. Cohesive zones represent failure along the interface and the augmented finite element method (A-FEM) is used for matrix cracking. Matrix cracks are formed at an angle of 55 deg−60 deg relative to the loading direction, which is in good agreement with experiments. Matrix cracks initiate at the tip of the debond, and for equi-biaxial loading cracks are formed at both tips. For elliptical reinforcement the matrix cracks initiate at the narrow end of the ellipse. The load carrying capacity is highest for ligaments in the loading direction greater than that of the transverse direction.


Author(s):  
Annette M. Boehm ◽  
Michael M. Bell

AbstractThe newly developed SAMURAI-TR is used to estimate three-dimensional temperature and pressure perturbations in Hurricane Rita on 23 September 2005 from multi-Doppler radar data during the RAINEX field campaign. These are believed to be the first fully three-dimensional gridded thermodynamic observations from a TC. Rita was a major hurricane at this time and was affected by 13 m s−1 deep-layer vertical wind shear. Analysis of the contributions of the kinematic and retrieved thermodynamic fields to different azimuthal wavenumbers suggests the interpretation of eyewall convective forcing within a three-level framework of balanced, quasi-balanced, and unbalanced motions. The axisymmetric, wavenumber-0 structure was approximately in thermal-wind balance, resulting in a large pressure drop and temperature increase toward the center. The wavenumber-1 structure was determined by the interaction of the storm with environmental vertical wind shear resulting in a quasi-balance between shear and shear-induced kinematic and thermo-dynamic perturbations. The observed wavenumber-1 thermodynamic asymmetries corroborate results of previous studies on the response of a vortex tilted by shear, and add new evidence that the vertical motion is nearly hydrostatic on the wavenumber-1 scale. Higher-order wavenumbers were associated with unbalanced motions and convective cells within the eyewall. The unbalanced vertical acceleration was positively correlated with buoyant forcing from thermal perturbations and negatively correlated with perturbation pressure gradients relative to the balanced vortex.


Author(s):  
Lei He ◽  
Caihua Xiong ◽  
Qinhao Zhang ◽  
Wenbin Chen ◽  
Chenglong Fu ◽  
...  

2020 ◽  
Vol 10 (20) ◽  
pp. 7307
Author(s):  
Seonghye Kim ◽  
Toshiyuki Murakami

The parameters of walking have been studied from the viewpoints of joint rotation and translation of body. The balance and symmetry of walking are indispensable features to understand for healthy walking, while also being a personal characteristic. However, quantification has not been easy to carry out in the case of the conventional gait parameters COG (center of gravity) and ZMP (zero moment point). In this approach, the CP (crossing point) is proposed to quantify the concept of symmetry and balance by comparing it to the COG and ZMP. The CP is estimated based on the intersection between the hip line and the ankle line. While the hip line is fixed on the upper body where the COG is, the ankle line is altered depending on the each footfall, where the ZMP is. Therefore, the values of COG, ZMP, and CP have similar or different tendencies in terms of whether balanced walking results in symmetry or not. The validity of this is verified by carrying out a simulation with robot walking, and an experiment using human walking. Through additional experiments, it was noticed that the CP was able to improve the role of COG and ZMP in terms of not only stability, but also its relationship with the movement range of the lower limbs.


Sign in / Sign up

Export Citation Format

Share Document