A Dynamic Model of Magneto-Active Elastomer Actuation of the Waterbomb Base

Author(s):  
Landen Bowen ◽  
Mary Frecker ◽  
Timothy W. Simpson ◽  
Paris von Lockette

Of special interest in the growing field of origami engineering is self-folding, wherein a material is able to fold itself in response to an applied field. In order to simulate the effect of active materials on an origami-inspired design, a dynamic model is needed. Ideally, the model would be an aid in determining how much active material is needed and where it should be placed to actuate the model to the desired position. A dynamic model of the origami waterbomb base, a well-known and foundational origami structure, is developed using Adams, a commercial dynamics software package. Creases are approximated as torsion springs with stiffness and damping. The stiffness of an origami crease is calculated, and the dynamic model is verified using the bistability of the waterbomb. An approximation of the torque produced by magneto-active elastomers (MAE) is calculated and is used to simulate MAE-actuated self-folding of the waterbomb.

2015 ◽  
Vol 7 (1) ◽  
Author(s):  
Landen Bowen ◽  
Kara Springsteen ◽  
Hannah Feldstein ◽  
Mary Frecker ◽  
Timothy W. Simpson ◽  
...  

Of special interest in the growing field of origami engineering is self-folding, wherein a material is able to fold itself in response to an applied field. In order to simulate the effect of active materials on an origami-inspired design, a dynamic model is needed. Ideally, the model would be an aid in determining how much active material is needed and where it should be placed to actuate the model to the desired position(s). A dynamic model of the origami waterbomb base, a well-known and foundational origami mechanism, is developed using adams 2014, a commercial multibody dynamics software package. Creases are approximated as torsion springs with both stiffness and damping. The stiffness of an origami crease is calculated, and the dynamic model is verified using the waterbomb. An approximation of the torque produced by magneto-active elastomers (MAEs) is calculated and is used to simulate MAE-actuated self-folding of the waterbomb. Experimental validation of the self-folding waterbomb model is performed, verifying that the dynamic model is capable of accurate simulation of the fold angles.


Author(s):  
Landen Bowen ◽  
Kara Springsteen ◽  
Saad Ahmed ◽  
Erika Arrojado ◽  
Mary Frecker ◽  
...  

A concept recently proposed by the authors is that of a multi-field sheet that folds into several distinct shapes based on the applied field, be it magnetic, electric, or thermal. In this paper the design, fabrication, and modeling of a multi-field bifold is presented that utilizes magneto-active elastomer (MAE) to fold along one axis and P(VDF-TrFE-CTFE) terpolymer to fold along the other axis. In prior work a dynamic model of self-folding origami was developed which simulated the effect of magneto-active materials on origami-inspired designs. This dynamic model is extended to include the effect of electroactive polymers (EAP) by approximating them as combinations of torques. The accuracy of this approximation is validated using experimental data from a terpolymer-actuated design known as the barking dog. After adjusting crease stiffness within the dynamic model, it shows good correlation with experimental data, indicating that the developed EAP approximation is accurate. With the capabilities of the dynamic model improved by the EAP approximation method and a refined MAE approximation, the multi-field bifold can be accurately modeled. The model is compared to experimental data obtained from the fabricated multi-field bifold, and is found to predict well the fold angles of the sample. This validation is a first step to the simulation, design, and fabrication of more complicated multi-field sheets.


2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Landen Bowen ◽  
Kara Springsteen ◽  
Saad Ahmed ◽  
Erika Arrojado ◽  
Mary Frecker ◽  
...  

A concept recently proposed by the authors is that of a multifield sheet that folds into several distinct shapes based on the applied field, be it magnetic, electric, or thermal. In this paper, the design, fabrication, and modeling of a multifield bifold are presented, which utilize magneto-active elastomer (MAE) to fold along one axis and an electro-active polymer, P(VDF-TrFE-CTFE) terpolymer, to fold along the other axis. In prior work, a dynamic model of self-folding origami was developed, which approximated origami creases as revolute joints with torsional spring–dampers and simulated the effect of magneto-active materials on origami-inspired designs. In this work, the crease stiffness and MAE models are discussed in further detail, and the dynamic model is extended to include the effect of electro-active polymers (EAP). The accuracy of this approximation is validated using experimental data from a terpolymer-actuated origami design. After adjusting crease stiffness within the dynamic model, it shows good correlation with experimental data, indicating that the developed EAP approximation is accurate. With the capabilities of the dynamic model improved by the EAP approximation method, the multifield bifold can be fully modeled. The developed model is compared to the experimental data obtained from a fabricated multifield bifold and is found to accurately predict the experimental fold angles. This validation of the crease stiffness, MAE, and EAP models allows for more complicated multifield applications to be designed with confidence in their simulated performance.


2021 ◽  
Vol 13 (7) ◽  
pp. 4030
Author(s):  
Emily Birch ◽  
Ben Bridgens ◽  
Meng Zhang ◽  
Martyn Dade-Robertson

This paper introduces a new active material which responds to changes in environmental humidity. There has been growing interest in active materials which are able to respond to their environment, creating dynamic architectural systems without the need for energy input or complex systems of sensors and actuators. A subset of these materials are hygromorphs, which respond to changes in relative humidity (RH) and wetting through shape change. Here, we introduce a novel hygromorphic material in the context of architectural design, composed of multiple monolayers of microbial spores of Bacillus subtilis and latex sheets. Methods of fabrication and testing for this new material are described, showing that small actuators made from this material demonstrate rapid, reversible and repeatable deflection in response to changes in RH. It is demonstrated that the hygromorphic actuators are able to lift at least 150% of their own mass. Investigations are also extended to understanding this new biomaterial in terms of meaningful work.


Transport ◽  
2005 ◽  
Vol 20 (1) ◽  
pp. 23-31 ◽  
Author(s):  
Damian Gasiorek ◽  
Arkadiusz Mežyk ◽  
Eugeniusz Switoński

This paper presents a method of developing a dynamic model enabling the study of the effect of the flexibility of the housing on dynamic phenomena in electromechanical drive systems. The research was performed on the basis of an electromechanical model with feedback between the mechanical subsystem (toothed gear with housing) and the electrical subsystem using a software package developed by the author in MATLAB environment.


Author(s):  
İsmail Tontul

The increase in consumers' demands for safer and healthier food has led to the development of many new products in food technology. For this reason, micro- or nanoencapsulation has become an important area in order to protect food components with functional properties against environmental conditions and to provide controlled release in recent years. As a matter of fact, many encapsulation techniques have been developed and many different active materials have been encapsulated. Nanoemulsions, a nanoencapsulation technique, are the process of encapsulating core material in two immiscible liquids. Nanoemulsions have higher stability and loading capacity compared to normal emulsions. It also increases the bioavailability of the core materials because of the increased absorption of the active material in the digestive tract. In this review, the required materials for nanoemulsion preparation, the nanoemulsification methods, and the studies on the encapsulation of various food components in nanoemulsions have been reviewed.


2020 ◽  
Vol 6 (13) ◽  
pp. eaay7608 ◽  
Author(s):  
Haoming Liu ◽  
Yingying Du ◽  
Jean-Philippe St-Pierre ◽  
Mads S. Bergholt ◽  
Hélène Autefage ◽  
...  

Cellular bioenergetics (CBE) plays a critical role in tissue regeneration. Physiologically, an enhanced metabolic state facilitates anabolic biosynthesis and mitosis to accelerate regeneration. However, the development of approaches to reprogram CBE, toward the treatment of substantial tissue injuries, has been limited thus far. Here, we show that induced repair in a rabbit model of weight-bearing bone defects is greatly enhanced using a bioenergetic-active material (BAM) scaffold compared to commercialized poly(lactic acid) and calcium phosphate ceramic scaffolds. This material was composed of energy-active units that can be released in a sustained degradation-mediated fashion once implanted. By establishing an intramitochondrial metabolic bypass, the internalized energy-active units significantly elevate mitochondrial membrane potential (ΔΨm) to supply increased bioenergetic levels and accelerate bone formation. The ready-to-use material developed here represents a highly efficient and easy-to-implement therapeutic approach toward tissue regeneration, with promise for bench-to-bedside translation.


2016 ◽  
Vol 879 ◽  
pp. 2150-2152
Author(s):  
Shunsuke Yagi ◽  
Masaaki Fukuda ◽  
Tetsu Ichitsubo ◽  
Eiichiro Matsubara

Rechargeable Mg batteries have received intensive attention as affordable rechargeable batteries with high electromotive force, high energy density, and high safety. Mg possesses two valence electrons and has the lowest standard electrode potential (ca. -2.36 V vs. SHE) among the air-stable metals. There is another advantage that Mg metal can be used as an active material because Mg metal hardly forms dendrites. However, the slow diffusion of Mg ions in solid crystals prevents the realization of active materials for Mg rechargeable batteries at room temperature. Although some complex oxides have been reported to work as active materials at higher temperatures, Chevrel compounds are still the gold standards, which work at room temperature. However, the working voltage of the Mg battery using a Chevrel compound for the cathode is only ca. 1.2 V, which is far below that of Li-ion batteries (3-5 V). Nevertheless, Chevrel compounds have the significant advantage that a relatively large space exists in the crystal structure, which allows for fast Mg ion diffusion. In the present study, we investigated some materials with framework structures as cathodes for Mg batteries, which can alleviate the electrostatic constraint between Mg ions and cathode constituents. Specifically, we investigated the redox behavior of the thin films of Prussian blue and Prussian blue analogues in electrolytes containing an Mg salt using electrochemical quartz crystal microbalance and X-ray absorption spectroscopy. In addition, we discuss the electrochemical insertion/extraction behavior of Mg ions and their solvation structures.


2014 ◽  
Vol 23 (9) ◽  
pp. 090201 ◽  
Author(s):  
Darren Hartl ◽  
Dimitris Lagoudas ◽  
Richard Malak ◽  
Mary Frecker ◽  
Zoubeida Ounaies

2021 ◽  
Vol 11 (24) ◽  
pp. 11734
Author(s):  
Branko Tomičić ◽  
Antonija Šumiga ◽  
Josip Nađ ◽  
Dunja Srpak

During transients that occur in an electric network, large currents can flow and large electromagnetic torques can be developed in electric generators. Accurate calculation of currents and magnetic fields during transients is an important element in the optimal design of generators and network parts, as well as mechanical parts of machines and other torque transmission parts. This paper describes the modeling of a sudden three-phase short-circuit on a synchronous generator using the finite element method (FEM) and the dynamic model. The model for simulations that use the FEM was built in the MagNet software package, and the dynamic model is embedded in the MATLAB/Simulink software package. The dynamic simulation model of a part of a network with two identical generators, represented by equivalent parameters, was developed. The results obtained after the simulation of a sudden three-phase fault in the generators by both methods are presented, including three-phase voltages, three-phase currents, machine speeds, excitation voltages, and mechanical power. In particular, the short-circuit current in the phase with the highest peak value was analyzed to determine the accuracy of the equivalent parameters used in the dynamic model. Finally, the results of these two calculation methods are compared, and recommendations are presented for the application of different modeling methods.


Sign in / Sign up

Export Citation Format

Share Document