Developing Design Guidelines for Meso-Scaled Periodic Cellular Material Structures Under Shear Loading

Author(s):  
Mohammad Fazelpour ◽  
Prabhu Shankar ◽  
Joshua D. Summers

Much research has been conducted on effective elastic properties of meso-scaled periodic cellular material (MPCM) structures; however, limited research is found in the literature for design guidelines to develop a unit cell (UC) topology and shape for multiple loading conditions. The current methods to design topology of unit cells has experienced limitations including numerical modeling challenges and trial-and-error associated with topology optimization and intuitive methods, respectively. To address this limitation this paper aims to develop guidelines for redesign of unit cell topology and shape under in-plane shear loading. The guidelines are intended to use design knowledge for helping engineers by providing recommendations at any stage of the design process. In this paper, the guidelines are developed by changing topology characteristics to achieve a desired effective property of a MPCM structure. The effect of individual members such as side connection and transverse connection of MPCM structure when subjected to in-plane shear loading are investigated through conducting a set of numerical simulation on UCs with similar topology and shape characteristics. Based on the simulation results, the unit cell design guidelines are developed to provide recommendations to engineers on improving shear flexure of MPCM during the design process.

2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Mohammad Fazelpour ◽  
Prabhu Shankar ◽  
Joshua D. Summers

Much research has been conducted on effective elastic properties of meso-scaled periodic cellular material (MPCM) structures; however, there is only limited research providing guidelines on how to develop improved unit cell (UC) topologies and shapes for a given set of loading requirements and conditions. This paper presents guidelines to improve the shear flexibility of the MPCMs while maintaining the effective shear modules by changing the topology or the shape of a unit cell. The guidelines are intended to use design knowledge for helping engineers by providing recommendations at any stage of the design process. In this paper, the guidelines are developed by changing topology characteristics to achieve a desired effective property of the MPCM structure. The effects of individual members, such as side connection, transverse connection, vertical legs, and curved beams of MPCM structure, when subjected to the in-plane shear loading are investigated through conducting a set of numerical simulation on UCs with similar topology and shape characteristics. Based on the simulation results, the unit cell design guidelines are developed to provide recommendations to engineers on improving the shear flexure of MPCM during the design process. Ultimately, a unit cell design guideline development method is offered and demonstrated by developing two new design guidelines.


Author(s):  
I’Shea Boyd ◽  
Mohammad Fazelpour

Abstract The periodic cellular materials are comprised of repeatable unit cells. Due to outstanding effective properties of the periodic cellular materials such as high flexibility or high stiffness at low relative density, they have a wide range of applications in lightweight structures, crushing energy absorption, compliant structures, among others. Advancement in additive manufacturing has led to opportunities for making complex unit cells. A recent approach introduced four unit cell design guidelines and verified them through numerical simulation and user studies. The unit cell design guidelines aim to guide designers to re-design the shape or topology of a unit cell for a desired structural behavior. While the guidelines were identified as ideation tools, the effectiveness of the guidelines as ideation tools has not been fully investigated. To evaluate the effectiveness of the guidelines as ideation tools, four objective metrics have been considered: novelty, variety, quality, and quantity. The results of this study reveal that the unit cell design guidelines can be considered as ideation tools. The guidelines are effective in aiding engineers in creating novel unit cells with improved shear flexibility while maintaining the effective shear modulus.


Designs ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 22 ◽  
Author(s):  
Md Moniruzzaman ◽  
Christopher O'Neal ◽  
Ariful Bhuiyan ◽  
Paul F. Egan

Emerging 3D printing technologies are enabling the rapid fabrication of complex designs with favorable properties such as mechanically efficient lattices for biomedical applications. However, there is a lack of biocompatible materials suitable for printing complex lattices constructed from beam-based unit cells. Here, we investigate the design and mechanics of biocompatible lattices fabricated with cost-effective stereolithography. Mechanical testing experiments include material characterization, lattices rescaled with differing unit cell numbers, topology alterations, and hierarchy. Lattices were consistently printed with 5% to 10% lower porosity than intended. Elastic moduli for 70% porous body-centered cube topologies ranged from 360 MPa to 135 MPa, with lattices having decreased elastic moduli as unit cell number increased. Elastic moduli ranged from 101 MPa to 260 MPa based on unit cell topology, with increased elastic moduli when a greater proportion of beams were aligned with the loading direction. Hierarchy provided large pores for improved nutrient transport and minimally decreased lattice elastic moduli for a fabricated tissue scaffold lattice with 7.72 kN/mm stiffness that is suitable for bone fusion. Results demonstrate the mechanical feasibility of biocompatible stereolithography and provide a basis for future investigations of lattice building blocks for diverse 3D printed designs.


Author(s):  
Mohammad Fazelpour ◽  
Apurva Patel ◽  
Prabhu Shankar ◽  
Joshua D. Summers

The objective of this user study is to evaluate the effect of sequencing of unit cell design guidelines. The unit cell design guidelines support engineers in intentionally redesigning the topology and shape of unit cells for a desired structural behavior. In this study, four different unit cell design guidelines are selected to enable designers in increasing the shear flexure in meso-scale periodic cellular materials. These guidelines are not necessarily objective and may result in different modified unit cells when applied by different designers. Therefore, this user study was designed to evaluate the effect of sequencing the guidelines on the subjectivity and the modified unit cells. Twelve different sequencing sets are tested and it is found that certain sequencing of guidelines resulted in more novel ideas than other cases with less subjective guidelines.


Author(s):  
Souvik Chakraborty ◽  
Dylan Hebert ◽  
Tanvir Rahman Faisal

Abstract Inspired by the nature, this study analyzes in-plane compressive responses of different modes of hierarchical architected structures with varying topologies. Architected cellular structures with two different unit cell topologies — square and kagome are considered, both having a relative density of 0.25. Each unit cell topology is designed with three different configurations. The base structure is the primitive one with solid homogeneous cell wall. The nested hierarchical structure is derived from the primitive one with cellular structuring in the cell wall. The third and final one is the fractal-like hierarchical structure, where same unit cells appear on different length scales. 3D printed structures were subjected to uniaxial compression to characterize their in-plane mechanical properties. The compressive stress-strain behaviors reveal that all the structures demonstrate the classical behavior of cellular structures followed by significant recovery of their initial shape upon load withdrawal. The energy absorptions demonstrated by the plateau regions before densification are not only governed by their structural topologies, but also largely governed by the configurations of hierarchical organizations. Hence, this study suggests the application specific design of hierarchical architected structures for defined loading conditions.


Author(s):  
Ehsan Masoumi Khalil Abad ◽  
Sajad Arabnejad Khanoki ◽  
Damiano Pasini

This paper presents a method to improve the fatigue strength of 2D periodic cellular materials under a fully-reversed loading condition. For a given cell topology, the shape of the unit cell is synthesized to minimize any stress concentration caused by discontinuities in the cell geometry. We propose to reduce abrupt geometric changes emerging in the periodic microstructure through the synthesis of a cell shape defined by curved boundaries with continuous curvature, i.e. G2-continous curves. The bending moments caused by curved cell elements are reduced by minimizing the curvature of G2-continuous cell elements so as to make them as straight as possible. The asymptotic homogenization technique is used to obtain the homogenized stiffness matrix and the fatigue strength of the synthesized cellular material. The proposed methodology is applied to synthesize a unit cell topology described by smooth boundary curves. Numeric simulations are performed to compare the performance of the synthesized cellular solid with that of common two dimensional lattice materials having hexagonal, circular, square, and Kagome shape of the unit cell. The results show that the methodology enables to obtain a cellular material with improved fatigue strength. Finally, a parametric study is performed to examine the effect of different geometric parameters on the performance of the proposed cellular geometries.


Author(s):  
L. Fei ◽  
P. Fraundorf

Interface structure is of major interest in microscopy. With high resolution transmission electron microscopes (TEMs) and scanning probe microscopes, it is possible to reveal structure of interfaces in unit cells, in some cases with atomic resolution. A. Ourmazd et al. proposed quantifying such observations by using vector pattern recognition to map chemical composition changes across the interface in TEM images with unit cell resolution. The sensitivity of the mapping process, however, is limited by the repeatability of unit cell images of perfect crystal, and hence by the amount of delocalized noise, e.g. due to ion milling or beam radiation damage. Bayesian removal of noise, based on statistical inference, can be used to reduce the amount of non-periodic noise in images after acquisition. The basic principle of Bayesian phase-model background subtraction, according to our previous study, is that the optimum (rms error minimizing strategy) Fourier phases of the noise can be obtained provided the amplitudes of the noise is given, while the noise amplitude can often be estimated from the image itself.


2021 ◽  
Vol 11 (3) ◽  
pp. 1171
Author(s):  
Chang Xu ◽  
Zhihong Sun ◽  
Guowei Shao

Two-unit cells developed to predict the effective thermal conductivities of four-directional carbon/carbon composites with the finite element method are proposed in this paper. The smaller-size unit cell is formulated from the larger-size unit cell by two 180° rotational transformations. The temperature boundary conditions corresponding to the two-unit cells are derived, and the validity is verified by the temperature and heat flux distributions at specific positions of the larger-size unit cell and the smaller-size unit cell. The thermal conductivities of the carbon fiber bundles and carbon fiber rods are measured firstly. Then, combined with the properties of the matrix, the effective thermal conductivities of the four-directional carbon/carbon composites are numerically predicted. The results in transverse direction predicted by the larger-size unit cell and the smaller-size unit cell are both higher than experimental values, which are 5.8 to 6.2% and 7.3 to 8.2%, respectively. In longitudinal direction, the calculated thermal conductivities of the larger-size unit cell and the smaller-size unit cell are 6.8% and 6.2% higher than the experimental results, respectively. In addition, carbon fiber rods with different diameters are set to clarify the influence on the effective thermal conductivities of the four-directional carbon/carbon composites.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 113
Author(s):  
Rajiv Mohan David ◽  
Mohammad Saadh AW ◽  
Tanweer Ali ◽  
Pradeep Kumar

This paper presents an innovative method for the design of a triple band meta-mode antenna. This unique design of antenna finds application in a particular frequency band of WLAN and WiMAX. This antenna comprises of a square complimentary split ring resonator (SCSRR), a coaxial feed, and two symmetrical comb shaped split ring resonators (CSSRR). The metamaterial unit cell SCSRR independently gains control in the band range 3.15–3.25 GHz (WiMAX), whereas two symmetrical CSSRR unit cell controls the band in the ranges 3.91–4.01 GHz and 5.79–5.94 GHz (WLAN). This design methodology and the study of the suggested unit cells structure are reviewed in classical waveguide medium theory. The antenna has a miniaturized size of only 0.213λ0 × 0.192λ0 × 0.0271λ0 (20 × 18 × 2.54 mm3, where λ0 is the free space wavelength at 3.2 GHz). The detailed dimension analysis of the proposed antenna and its radiation efficiency are also presented in this paper. All the necessary simulations are carried out in High Frequency Structure Simulator (HFSS) 13.0 tool.


Sign in / Sign up

Export Citation Format

Share Document