Lightweight Design of Three-Dimensional Woven Composite Automobile Shock Tower

Author(s):  
Wei Tao ◽  
Ping Zhu ◽  
Zhao Liu ◽  
Wei Chen

This paper proposes a lightweight design strategy for automobile shock tower made of three-dimensional woven composites (3DWOC). The presented design strategy consists of an analytical model for predicting the mechanical behaviors of composites and an optimization method. Volume averaging method and iso-strain assumption are adopted in the analytical model to calculate the elastic properties and strength characteristics of 3DWOC. The predicted properties are in good agreement with the available experimental data. An optimization method integrating particle swarm optimization algorithm and surrogate modeling technique is employed to solve the optimization problem with mixed discrete-continuous design variables from material and structure. The optimized automobile shock tower meets all requirements on structural stiffness and strength when reaching a 30.27% weight reduction.

2020 ◽  
Vol 26 (3) ◽  
pp. 484-496
Author(s):  
Yu Yuan ◽  
Hendrix Demers ◽  
Xianglong Wang ◽  
Raynald Gauvin

AbstractIn electron probe microanalysis or scanning electron microscopy, the Monte Carlo method is widely used for modeling electron transport within specimens and calculating X-ray spectra. For an accurate simulation, the calculation of secondary fluorescence (SF) is necessary, especially for samples with complex geometries. In this study, we developed a program, using a hybrid model that combines the Monte Carlo simulation with an analytical model, to perform SF correction for three-dimensional (3D) heterogeneous materials. The Monte Carlo simulation is performed using MC X-ray, a Monte Carlo program, to obtain the 3D primary X-ray distribution, which becomes the input of the analytical model. The voxel-based calculation of MC X-ray enables the model to be applicable to arbitrary samples. We demonstrate the derivation of the analytical model in detail and present the 3D X-ray distributions for both primary and secondary fluorescence to illustrate the capability of our program. Examples for non-diffusion couples and spherical inclusions inside matrices are shown. The results of our program are compared with experimental data from references and with results from other Monte Carlo codes. They are found to be in good agreement.


2017 ◽  
Vol 37 (4) ◽  
pp. 247-266 ◽  
Author(s):  
Xinmiao Wang ◽  
Li Chen ◽  
Junshan Wang ◽  
Xintao Li ◽  
Zhongwei Zhang

A novel multiaxial three-dimensional woven preform and the weaving technique have been developed in this study. The preform exhibits remarkable designs, which is formed by multiple layers of different yarn sets, including bias (+bias/−bias), warp, and filling, and all layers are locked by Z-yarns These layers are arranged in a rectangular fashion and the layer number and the position of bias layer can be determined by the end-use requirements. A weaving process and machine are proposed to produce the preform. The weaving technique enables the insertion of many warp layers between two opposite bias layers. The microstructure of the preform was also studied. Microscopic evidence of the microstructure reveals that the cross-sections of Z-yarn are variable along its central axis due to the lateral compression forces of adjacent yarns from different directions. On the basis of microscopic observation, a unit cell geometry model of multiaxial three-dimensional woven preform is established, and a good agreement has been obtained between the theoretical and experimental values of the structural parameters of woven composite samples.


Author(s):  
Seoung-Jin Seo ◽  
Kwang-Yong Kim

This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-ε turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.


Author(s):  
S. Pierret ◽  
H. Kato ◽  
R. Filomeno Coelho ◽  
A. Merchant

The detailed design of three-dimensional turbomachinery blades is a very challenging problem requiring multi-disciplinary analysis (MDA), efficient numerical optimization techniques and efficient shape parameterization techniques. Moreover, CAD systems have become an integral and critical part of the complete design process in various fields, and in particular in the field of turbomachine design. The connection of an automated design system to drive CAD geometry directly in the native CAD software is therefore mandatory in order to obtain an integrated design system that can be used in an industrial design chain. This paper presents and discusses an effort to incorporate these technologies into a single and integrated design system for the automatic optimization of turbomachinery blades. First, a brief summary of the algorithms and software used in this design system is presented. Then, the performance of this design system is first demonstrated on the automatic optimization of a counter-rotating fan stage. The fan is redesigned for several aerodynamic operating conditions as well as for multi-disciplinary objectives with constraints involving a CFD solver and structural mechanics FEM solver. The fan geometry is parameterized using 70 design variables and an optimum solution is found in 300 optimization cycles. The peak efficiency is increased by 1.5%, while the static stresses and dynamic vibration modes satisfy the constraints imposed during the optimization. Finally, a second application demonstrates the design optimization of a CAD model of the counter-rotating fan performed with direct integration to the CAD system using the CAPRI middleware. In this case the tip section of the first rotor is parameterized using 7 design variables. The efficiency is increased by 0.5% and the CAD integration in the optimization cycle is demonstrated.


Author(s):  
Weixiong Chen ◽  
Yangang Wang ◽  
Hao Wang ◽  
Shuanghou Deng ◽  
Haiqi Qin

The present study developed a three-dimensional compressible analytical model for predicting the rotating stall boundary in turbomachinery. Based on the small perturbation theory and the inviscid Euler equation. Using the perturbation wave dispersion theory and boundary conditions, the problem of stall prediction in turbomachinery can be regarded as the solution of the matrix eigenvalue problem. To validate the feasibility and accuracy of the developed analytical model. After that, the NASA Rotor 67 and NASA Stage 35, which have been disclosed in detail, are selected to validate the 3D analytical model. Results has been successfully verified the accuracy of the developed prediction model. Meanwhile, the advantages of the 3D analytical model, which considers the radial mainstream velocity and disturbance velocity are also demonstrated in comparison with the 2D model developed by Ludwig et al. Finally, the three-dimensional analytical model is used to predict the stall boundary of a contra-rotating compressor test rig. Results show that the downstream rotor encounters rotating stall firstly, and the stall mass flow is about 5.871kg/ s. A good agreement has been also revealed from the unsteady numerical simulation and thus again evidence the ability of the developed three-dimensional analytical model in terms of accuracy and efficiency.


Author(s):  
Liming Song ◽  
Zhenping Feng ◽  
Jun Li

A new optimization method named as Adaptive Range Differential Evolution (ARDE) is proposed and developed for the turbine stage design. The mathematical tests are used to demonstrate the optimization performance of the present ARDE through compared with the Simple Genetic Algorithms (SGA) and the Differential Evolution (DE). Combined with the ARDE, surface modeling method and Navier-Stokes solver, a low aspect ratio transonic turbine stage is optimized, with 28 design variables in total, for the maximization of the isentropic efficiency. The optimization design of this case is performed on the cluster parallel Personal Computers. The optimal design turbine stage shows a better aerodynamic performance than that of the reference design while meeting the strength requirement. The robustness and reliability of the presented ARDE for the turbomachinery optimization design are also illustrated.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2584
Author(s):  
Liming Zhu ◽  
Huawei Zhang ◽  
Jing Guo ◽  
Ying Wang ◽  
Lihua Lyu

In order to avoid the delamination of traditional tubular composite materials and reduce its woven cost, on an ordinary loom, the three-dimensional (3D) tubular woven fabrics were woven with basalt filament tows, and then the 3D tubular woven composites were prepared with epoxy resin by a hand layup process. The wall thickness of the 3D tubular woven composite was thin, and was only 2 mm thick. Through experiments and finite element method (FEM) simulation, the axial compression properties of the material were analyzed. The results show that the material 2 mm thick has good axial compression performance, the maximum load value of the experiment is 10,578 N, and the maximum load value of the finite element simulation is 11,285 N. The error between the two is 6.68%, indicating that the experiment and simulation have a good consistency. The failure mode of the material is also analyzed through finite element method simulation in the paper, thus revealing the failure stress propagation, local stress concentration, and failure morphology of the material. It provides an effective reference for the design and application of the 3D tubular woven composite.


2015 ◽  
Vol 651-653 ◽  
pp. 1595-1601 ◽  
Author(s):  
Daniel Staupendahl ◽  
Christoph Becker ◽  
A. Erman Tekkaya

Chassis or cabin designs in the transportation sector are currently manufactured out of several single structural elements. To save handling steps and energy intensive joining processes and furthermore support lightweight design, bending processes can be used that offer the direct production of structural parts that incorporate the functionality of several single elements. In recent years, several processes for the kinematic bending of three-dimensional tubes and profiles have been developed. Additionally, three-roll push bending has gained in importance in manufacturing three-dimensional tubes. In this kinematic process, three-dimensional bending is achieved by continuously changing the bending plane relative to the workpiece during the forming process. Several studies exist that investigate the mechanisms that lead to three-dimensional bending contours. These were, however, based on the generation of empirical models, e.g. characteristic maps. Up until now, no analytical model exists, which describes the process of bending three-dimensional tubes in a comprehensive manner, especially taking into account tube torsion. In the following case study, the tube rotation needed to produce helices is measured and compared to helix radii and helix height. The results were subsequently used to set up an analytical model, which, first of all, describes the tube rotation needed to produce the torsion of the investigated helices and, more importantly, can be generalized to describe the tube rotation needed for the torsion of arbitrary bending curves.


2019 ◽  
Vol 943 ◽  
pp. 81-86
Author(s):  
Xing Keng Shen ◽  
Ming Yuan Li ◽  
Ying Dai ◽  
Xin Gui Zhou ◽  
Peng Fei He

The mechanical properties of KD-II type silicon carbide fiber braided three-dimensional four-directional (3D4d) SiCf/SiC woven composites fabricated by PIP method were studied in this paper. The computed tomography (CT) technology was used to observe the cross section shape and orientation of the fiber bundles inside woven composite materials, and digital image correlation (DIC) method was used to measure deformation, during the tensile tests of the composites. Theoretical and numerical methods were adopted to predict mechanical properties of the 3D4d SiCf/SiC woven composites, and effectiveness of different methods was discussed based on the comparison of results obtained from the experiments and prediction model.


2011 ◽  
Vol 201-203 ◽  
pp. 1279-1283
Author(s):  
Shou Yi Bi ◽  
Xing Pei Liang

A program for frequency optimal design of structure composed of bar, beam, plate is developed based on finite analysis system ZR[1] that finite element model, including mesh generation of truss element, beam element and plate element, is automatically generated. Because of integrated with three dimensional CAD, specification of boundary conditions and design variables can be finished based on the three dimensional CAD model, so user need not deal with nodal and element of finite model in the procedure of forming finite model and specifying mathematical problem for optimization. This paper introduces a new method how to insert the frequency sensitivity analysis process into the structural analysis program, integrate mathematical optimization method and design structure based frequency optimization. The program is applied to the optimal design of actual engineering. The results are acceptable.


Sign in / Sign up

Export Citation Format

Share Document