Mode Localization in Two Coupled Nearly Identical MEMS Cantilevers for Mass Sensing

Author(s):  
Toky Rabenimanana ◽  
Vincent Walter ◽  
Najib Kacem ◽  
Patrice Le Moal ◽  
Gilles Bourbon ◽  
...  

Abstract This paper investigates the mass sensing in a mode-localized sensor composed of two weakly coupled MEMS cantilevers with lengths 98μm and 100μm. The two resonators are connected by a coupling beam near the fixed end, and the shortest cantilever is electrostatically actuated with a combined AC-DC voltage. The DC actuation voltage is tuned to compensate the length difference and geometrical imperfections in order to dynamically equilibrate the system. An analytical model of the device using the Euler Bernoulli beam theory is presented and the required DC voltage to reach the balanced state is used. A mass perturbation is then added on the long cantilever and the eigenstate shifts and amplitude ratios in each mode are calculated for different couplings. Results show that the amplitude ratio of the second mode is the best output metric for the mass detection. For the validation of the model, an experimental investigation is carried out by using devices fabricated with the Multi-User MEMS Processes. Three different couplings are considered and the long cantilever is designed with a mass attached at its end. Instead of adding a mass on the device, we remove this part with a probe to introduce the perturbation. When the mass is removed, the experimental frequency responses of the device show localized vibrations, which are in good agreement with the theoretical results.

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 1084
Author(s):  
Toky Rabenimanana ◽  
Vincent Walter ◽  
Najib Kacem ◽  
Patrice Le Moal ◽  
Joseph Lardiès

This paper presents a nonlinear analytical model of MEMS mass sensor, which is composed of two cantilevers of 98 µm and 100 µm length, 20 µm width and 1.3 µm thick. They are connected by a coupling beam and only the shortest cantilever is actuated by a combined AC-DC voltage. The DC voltage is used to equilibrate the system and the phenomenon of mode localization is investigated when a mass perturbation is applied. The sensor is modeled as a continuous system with beam theory and non-ideal boundary conditions are considered by using flexible supports. With a low AC voltage of 10 mV, a DC voltage of 5.85 V can counterbalance the length difference. This DC voltage decreases at 5.60 V when we increase the AC voltage, due to the effect of electrostatic nonlinearities. For a relative added mass of 0.1%, the amplitude change in the two cantilevers is more important when the coupling is weaker.


2021 ◽  
Author(s):  
Jiahao Song ◽  
Ming Lyu ◽  
Najib Kacem ◽  
Jian Zhao ◽  
Pengbo Liu ◽  
...  

Abstract Mode-localization sensor with amplitude ratio as output metric has shown excellent potential in the field of micro-mass detection. In this paper, an asymmetric mode -localized mass sensor with a pair of electrostatically coupled resonators of different thickness is proposed. Partially distributed electrodes are introduced to ensure the asymmetric mode coupling of second and third order modes while actuating the thinner resonator by the distributed electrode. The analytical dynamic model is established by Euler–Bernoulli theory and solved by harmonic balance method (HBM) combined with asymptotic numerical method (ANM). Detailed investigations on the linear and nonlinear behavior, critical amplitude as well as the sensitivity of the sensor are performed. The sensitivity of the proposed sensor can be enhanced by about 20 times compared to first order mode-localized mass sensors. Furthermore, by exploiting the nonlinearities while driving the device beyond the critical amplitude for the in-phase mode, the sensor performs a great improvement in sensitivity up to 1.78 times. Besides, the influence of the decrease of coupling voltage is studied, which gives a good reference to avoid mode aliasing.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 310
Author(s):  
Muhammad Mubasher Saleem ◽  
Shayaan Saghir ◽  
Syed Ali Raza Bukhari ◽  
Amir Hamza ◽  
Rana Iqtidar Shakoor ◽  
...  

This paper presents a new design of microelectromechanical systems (MEMS) based low-g accelerometer utilizing mode-localization effect in the three degree-of-freedom (3-DoF) weakly coupled MEMS resonators. Two sets of the 3-DoF mechanically coupled resonators are used on either side of the single proof mass and difference in the amplitude ratio of two resonator sets is considered as an output metric for the input acceleration measurement. The proof mass is electrostatically coupled to the perturbation resonators and for the sensitivity and input dynamic range tuning of MEMS accelerometer, electrostatic electrodes are used with each resonator in two sets of 3-DoF coupled resonators. The MEMS accelerometer is designed considering the foundry process constraints of silicon-on-insulator multi-user MEMS processes (SOIMUMPs). The performance of the MEMS accelerometer is analyzed through finite-element-method (FEM) based simulations. The sensitivity of the MEMS accelerometer in terms of amplitude ratio difference is obtained as 10.61/g for an input acceleration range of ±2 g with thermomechanical noise based resolution of 0.22 and nonlinearity less than 0.5%.


2003 ◽  
Vol 03 (04) ◽  
pp. 461-490 ◽  
Author(s):  
N. SILVESTRE ◽  
D. CAMOTIM

A geometrically nonlinear Generalized Beam Theory (GBT) is formulated and its application leads to a system of equilibrium equations which are valid in the large deformation range but still retain and take advantage of the unique GBT mode decomposition feature. The proposed GBT formulation, for the elastic post-buckling analysis of isotropic thin-walled members, is able to handle various types of loading and arbitrary initial geometrical imperfections and, in particular, it can be used to perform "exact" or "approximate" (i.e., including only a few deformation modes) analyses. Concerning the solution of the system of GBT nonlinear equilibrium equations, the finite element method (FEM) constitutes the most efficient and versatile numerical technique and, thus, a beam FE is specifically developed for this purpose. The FEM implementation of the GBT post-buckling formulation is reported in some detail and then employed to obtain numerical results, which validate and illustrate the application and capabilities of the theory.


2020 ◽  
Author(s):  
Abambres M ◽  
Camotim D ◽  
Silvestre N

<p>This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) formulation, based on J<sub>2</sub>-flow plasticity theory, that makes it possible to perform physically and geometrically non-linear (post-buckling) analyses of prismatic thin-walled members (i) with arbitrary cross-section shapes, (ii) exhibiting any type of deformation pattern (global, local, distortional, warping, shear), (iii) made from non-linear materials with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometric imperfections, having generic distributions. After providing a brief overview of the main GBT assumptions, kinematical relations and equilibrium equations, the development of a novel non-linear beam finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the presentation and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel column exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) stress diagrams/distributions and (iv) deformed configurations. For validation purposes, the GBT results are also compared with values yielded by Abaqus rigorous shell FE analyses.</p>


Author(s):  
Zia Saadatnia ◽  
Ebrahim Esmailzadeh

The aim of this study is to model and investigate the nonlinear transversal vibration of a carbon nanotube carrying an intermediate mass along the structure considering the nonlocal and non-classical theories. Due to the application of the proposed system in sensors, actuators, mass detection units among others, the analysis of forced vibration of such systems is of an important task being considered here. The governing equation of motion is developed by combining the Euler-Bernoulli beam theory and the Eringen non-local theory. The Galerkin approach is employed to obtain the governing differential equation of the system and the transient beam response for the clamped-hinged boundary condition. A strong perturbation method is utilized to solve the equation obtained and the system responses subjected to a harmonic excitation is examined. The steady-state motion is studied and the frequency response in an analytical form is obtained. Finally, results are evaluated for some numerical parameter values and their effect on the frequency responses are presented and fully discussed.


2021 ◽  
Author(s):  
Ming Lyu ◽  
Jian Zhao ◽  
Najib Kacem ◽  
Pengbo Liu

Abstract A novel dual-mass accelerometer is proposed while exploiting the phenomenon of mode localization in two electrostatically coupled resonators with an adjustable coupling strength. The external inertial forces are transmitted differentially to the resonators in term of axial load change through the two levering mechanisms, breaking the balanced state and resulting in a drastic change in the amplitudes of the two resonators. Based on the Euler Bernoulli theory, the governing equations of the coupled system are derived and numerically solved. The sensitivity in term of relative shift of amplitude ratio can be improved by 4 orders of magnitude compared to frequency shift. Finally, the effect of the quality factor on the sensor dynamics has also been investigated, and the results show that it only affects the vibration magnitude of the resonators while operating below the critical amplitude.


Author(s):  
Adam Bouchaala ◽  
Ali H. Nayfeh ◽  
Mohammad I. Younis

We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped-clamped microbeams due to an added mass. Based on the Euler-Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes.


Author(s):  
Mahmoud E. Khater ◽  
Eihab M. Abdel-Rahman ◽  
Ali H. Nayfeh

We propose a technique to increase the sensitivity and simplify the process of measuring minute masses using electrostatically-actuated MEMS. The sensor is composed of a cantilever beam connected to a rigid plate at its free end and coupled to an electrode underneath it. The method depends on the observation that the sensitivity of an electrostatically-actuated MEMS is highly enhanced when the driving voltage is close to the pull-in limit. We study two cases: the device actuated by a static force (DC voltage) and a dynamic force (combined AC and DC voltage). Sensitivity analysis is used to estimate the minimum detectable mass near static pull-in and near a dynamic pull-in point due to a cyclic-fold bifurcation.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

This paper presents and illustrates the application of an elastic-plastic Generalised Beam Theory (GBT) formulation, based on J2-flow plasticity theory, that makes it possible to perform physically and geometrically non-linear (post-buckling) analyses of prismatic thin-walled members (i) with arbitrary cross-section shapes, (ii) exhibiting any type of deformation pattern (global, local, distortional, warping, shear), (iii) made from non-linear materials with isotropic strain-hardening and (iv) containing initial imperfections, namely residual stresses and/or geometric imperfections, having generic distributions. After providing a brief overview of the main GBT assumptions, kinematical relations and equilibrium equations, the development of a novel non-linear beam finite element (FE) is addressed in some detail. Moreover, its application is illustrated through the presentation and discussion of numerical results concerning the post-buckling behaviour of a fixed-ended I-section steel column exhibiting local initial geometrical imperfections, namely (i) non-linear equilibrium paths, (ii) displacement profiles, (iii) stress diagrams/distributions and (iv) deformed configurations. For validation purposes, the GBT results are also compared with values yielded by ABAQUS rigorous shell FE analyses.


Sign in / Sign up

Export Citation Format

Share Document