scholarly journals Application of Multi-Material 3D Printing for Improved Functionality and Modularity of Open Source Low-Cost Prosthetics: A Case Study

Author(s):  
Sachin Bijadi ◽  
Erik de Bruijn ◽  
Erik Y. Tempelman ◽  
Jos Oberdorf

Low-cost 3D desktop printing, although still in its infancy, is rapidly maturing, with a wide range of applications. With its ease of production and affordability, it has led to development of a global maker culture, with the design and manufacture of artefacts by individuals as a collaborative & creative hobbyist practice. This has enabled mass customization of goods with the potential to disrupt conventional manufacturing, giving more people access to traditionally expensive products like prosthetics and medical devices [1], as is the case with e-NABLE, a global community providing open source prosthetics for people with upper limb deficiencies. However one of the major barriers to proliferation of 3D printing as a major manufacturing method is the limitation of compatible materials for use with the technology [2]. This places constraints on the design approach, as well as the complexity & functionality of artefacts that can be produced with 3D printing as compared to traditional manufacturing methods. As a result, devices like the e-NABLE Raptor Reloaded prosthetic hand, which is designed specifically to be produced via a single extruder FDM desktop 3D printer, have limited functionality as compared to conventional prosthetics, leading to low active use and prosthesis abandonment [3]. However, with the advent of multi-material desktop 3D printing, and increasing availability of a broader range of compatible materials (of varying characteristics) [2], there is scope for improving capabilities of low-cost prosthetics through the creation of more sophisticated multi-material functional integrated devices. This work documents the exploration of potential applications of multi-material 3D printing to improve production, capabilities and usability of low-cost open source prosthetics. Various material combinations were initially studied and functional enhancements for current 3D printed prosthetics were prototyped using key material combinations identified. Further, a user-centered design approach was utilized to develop a novel multi-material anthropomorphic prosthetic hand ‘ex_machina’ based on a modular platform architecture, to demonstrate the scope for reduced build complexity and improved dexterity & functional customization enabled by dual extrusion FDM desktop 3D printing. A full prototype was built & tested with a lead user, and results analyzed to determine scope for optimization.

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 936 ◽  
Author(s):  
Robert Brewin ◽  
Thomas Brewin ◽  
Joseph Phillips ◽  
Sophie Rose ◽  
Anas Abdulaziz ◽  
...  

Two expanding areas of science and technology are citizen science and three-dimensional (3D) printing. Citizen science has a proven capability to generate reliable data and contribute to unexpected scientific discovery. It can put science into the hands of the citizens, increasing understanding, promoting environmental stewardship, and leading to the production of large databases for use in environmental monitoring. 3D printing has the potential to create cheap, bespoke scientific instruments that have formerly required dedicated facilities to assemble. It can put instrument manufacturing into the hands of any citizen who has access to a 3D printer. In this paper, we present a simple hand-held device designed to measure the Secchi depth and water colour (Forel Ule scale) of lake, estuarine and nearshore regions. The device is manufactured with marine resistant materials (mostly biodegradable) using a 3D printer and basic workshop tools. It is inexpensive to manufacture, lightweight, easy to use, and accessible to a wide range of users. It builds on a long tradition in optical limnology and oceanography, but is modified for ease of operation in smaller water bodies, and from small watercraft and platforms. We provide detailed instructions on how to build the device and highlight examples of its use for scientific education, citizen science, satellite validation of ocean colour data, and low-cost monitoring of water clarity, colour and temperature.


Author(s):  
Hammad Mazhar

This paper describes an open source parallel simulation framework capable of simulating large-scale granular and multi-body dynamics problems. This framework, called Chrono::Parallel, builds upon the modeling capabilities of Chrono::Engine, another open source simulation package, and leverages parallel data structures to enable scalable simulation of large problems. Chrono::Parallel is somewhat unique in that it was designed from the ground up to leverage parallel data structures and algorithms so that it scales across a wide range of computer architectures and yet has a rich modeling capability for simulating many different types of problems. The modeling capabilities of Chrono::Parallel will be demonstrated in the context of additive manufacturing and 3D printing by modeling the Selective Layer Sintering layering process and simulating large complex interlocking structures which require compression and folding to fit into a 3D printer’s build volume.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840058
Author(s):  
Do-Hoon Shin ◽  
Dong-Keun Hyun ◽  
Yun-Hae Kim

In aerospace, aircraft weight is one of the important factors essential for long range and high fuel efficiency. Instead of fastening, bonding methods like co-curing, co-bonding and secondary bonding are used on the aircraft parts. Secondary bonding was developed for integrated parts because of easy handling, less defect ratio and low cost. During manufacturing, the integrated parts using secondary bonding, bonding strength can show a wide range of failure strengths. Due to inconstant failure strength, the design value can be dropped and reinforcement methods should be applied. To avoid over-designing and to get a constant value for failure, the adhesive failure cases are studied in this project. In this study, L joining composite parts are investigated under tensile loading. Different conditions are tested to select a suitable manufacturing method for secondary bonding methods. From the experimental results, the secondary bonding was sensitive at exposed temperature/time and shape conditions of the fillet. The results show that the failure strength depends on the shape of fillet and exposed time for curing.


Author(s):  
Frank Celentano ◽  
Nicholas May ◽  
Edward Simoneau ◽  
Richard DiPasquale ◽  
Zahra Shahbazi ◽  
...  

Professional musicians today often invest in obtaining antique or vintage instruments. These pieces can be used as collector items or more practically, as performance instruments to give a unique sound of a past music era. Unfortunately, these relics are rare, fragile, and particularly expensive to obtain for a modern day musician. The opportunity to reproduce the sound of an antique instrument through the use of additive manufacturing (3D printing) can make this desired product significantly more affordable. 3D printing allows for duplication of unique parts in a low cost and environmentally friendly method, due to its minimal material waste. Additionally, it allows complex geometries to be created without the limitations of other manufacturing techniques. This study focuses on the primary differences, particularly sound quality and comfort, between saxophone mouthpieces that have been 3D printed and those produced by more traditional methods. Saxophone mouthpieces are commonly derived from a milled blank of either hard rubber, ebonite or brass. Although 3D printers can produce a design with the same or similar materials, they are typically created in a layered pattern. This can potentially affect the porosity and surface of a mouthpiece, ultimately affecting player comfort and sound quality. To evaluate this, acoustic tests will be performed. This will involve both traditionally manufactured mouthpieces and 3D prints of the same geometry created from x-ray scans obtained using a ZEISS Xradia Versa 510. The scans are two dimensional images which go through processes of reconstruction and segmentation, which is the process of assigning material to voxels. The result is a point cloud model, which can be used for 3D printing. High quality audio recordings of each mouthpiece will be obtained and a sound analysis will be performed. The focus of this analysis is to determine what qualities of the sound are changed by the manufacturing method and how true the sound of a 3D printed mouthpiece is to its milled counterpart. Additive manufacturing can lead to more inconsistent products of the original design due to the accuracy, repeatability and resolution of the printer, as well as the layer thickness. In order for additive manufacturing to be a common practice of mouthpiece manufacturing, the printer quality must be tested for its precision to an original model. The quality of a 3D print can also have effects on the comfort of the player. Lower quality 3D prints have an inherent roughness which can cause discomfort and difficulty for the musician. This research will determine the effects of manufacturing method on the sound quality and overall comfort of a mouthpiece. In addition, we will evaluate the validity of additive manufacturing as a method of producing mouthpieces.


Author(s):  
Torstein Yddal ◽  
Sandy Cochran ◽  
Odd Helge Gilja ◽  
Michiel Postema ◽  
Spiros Kotopoulis

AbstractStudying the effects of ultrasound on biological cells requires extensive knowledge of both the physical ultrasound and cellular biology. Translating knowledge between these fields can be complicated and time consuming. With the vast range of ultrasonic equipment available, nearly every research group uses different or unique devices. Hence, recreating the experimental conditions and results may be expensive or difficult. For this reason, we have developed devices to combat the common problems seen in state-of-the-art biomedical ultrasound research. In this paper, we present the design, fabrication, and characterisation of an open-source device that is easy to manufacture, allows for parallel sample sonication, and is highly reproducible, with complete acoustic calibration. This device is designed to act as a template for sample sonication experiments. We demonstrate the fabrication technique for devices designed to sonicate 24-well plates and OptiCell™ using three-dimensional (3D) printing and low-cost consumables. We increased the pressure output by electrical impedance matching of the transducers using transmission line transformers, resulting in an increase by a factor of 3.15. The devices cost approximately €220 in consumables, with a major portion attributed to the 3D printing, and can be fabricated in approximately 8 working hours. Our results show that, if our protocol is followed, the mean acoustic output between devices has a variance of <1%. We openly provide the 3D files and operation software allowing any laboratory to fabricate and use these devices at minimal cost and without substantial prior know-how.


RSC Advances ◽  
2015 ◽  
Vol 5 (95) ◽  
pp. 78109-78127 ◽  
Author(s):  
Yong He ◽  
Yan Wu ◽  
Jian-Zhong Fu ◽  
Wen-Bin Wu

As the main advantage of μPADs is compact and low-cost, we suggest that three kinds of technology could be utilized to develop the prototype of μPADs-based instruments rapidly, including open source hardware-Aduino, smart phone and 3D printing.


2016 ◽  
Vol 12 ◽  
pp. 2776-2783 ◽  
Author(s):  
Philip J Kitson ◽  
Stefan Glatzel ◽  
Leroy Cronin

An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis.


Author(s):  
Tobias Schonwetter ◽  
Bram Van Wiele

This article outlines findings from a study in South Africa and Kenya that explored social entrepreneurs’ use of fabrication laboratories (fab labs), and in particular fab lab 3D printing services, in order to advance their social innovations and enterprises. Based on interviews with representatives of fab lab initiatives and social enterprises, the study found strong linkages between social entrepreneurship and fab labs, and between social entrepreneurs and the use of 3D printing technology. However, it was also found that social entrepreneurs tend not to rely primarily on fab labs for access to 3D printers, preferring to buy and build their own printer units—a practice made cost-effective through the selection of low-cost, open source models. In respect of the computer-aided design (CAD) software used to design the files for 3D printing, it was found that social entrepreneurs prefer the stability and user-friendliness of proprietary CAD software, despite the cost implications. At the same time, it was found that social entrepreneurs frequently use free and open source CAD files available online, and that they seek, in turn, to share their designs on a free and open source basis.


Author(s):  
Madelyn Davis ◽  
John Ball ◽  
Yucheng Liu ◽  
Tonya Stone

Abstract In this project, custom mount plates were designed and fabricated to secure cameras to unmanned aerial vehicles (UAVs) for data collection. An engineering design approach was followed to design the mount plates. Two types of mount plate were fabricated using different methods. One mount plate was cut from G10 fiberglass sheets following a traditional subtractive manufacturing process while the other one was made from 3D printing with polylactic acid (PLA). The two manufacture methods were compared in terms of manufacturing cost, time, and simplicity. Performance of these two plates including compatibility, weight, and strength were also discussed. Results of this project will facilitate researcher’s decision making for choosing the appropriate approach to make such apparatus.


Sign in / Sign up

Export Citation Format

Share Document