Simulation of Tethered Underwater Kites Moving in Three Dimensions for Power Generation

Author(s):  
Amirmahdi Ghasemi ◽  
David J. Olinger ◽  
Gretar Tryggvason

In this paper, a numerical simulation of tether undersea kites (TUSK) used for power generation is undertaken. The effect of varying key design parameters in these systems is studied. TUSK systems consist of a rigid-winged kite, or glider, moving in an ocean current. One proposed TUSK concept uses a tethered kite which is connected by a flexible tether to a support structure with a generator on a surface buoy. The numerical simulation models the flow field in a three-dimensional domain near the rigid undersea kite wing by solving the full Navier-Stokes equations. A moving computational domain method is used to reduce the computational run times. A second-order corrector-predictor method, along with Open Multi-Processing (OpenMP), is employed to solve the flow equations. In order to track the rigid kite, which is a rectangular planform wing with a NACA 0021 airfoil, an immersed boundary method is used. The tension force in the elastic tether is modeled by a simple Hooke’s law, and the effect of tether damping is added. PID control methods are used to adjust the kite pitch, roll and yaw angles during power (tether reel-out) and retraction (reel-in) phases to obtain the desired kite trajectories. During the reel-out phase the kite moves in successive cross-current motions in a figure-8 pattern, the tether length increases and power is generated. During reel-in the kite motion is along the tether, and kite hydrodynamic forces are reduced so that net positive power is produced. The effects of different key design parameters in TUSK systems, such as the ratio of tether to current velocity, and tether retraction velocity, are then further studied. System power output, kite trajectories, and vorticity flow fields for the kite are also determined.

Author(s):  
Amirmahdi Ghasemi ◽  
David J. Olinger ◽  
Gretar Tryggvason

In this paper, a numerical simulation of three dimensional motion of tether undersea kites (TUSK) for power generation is studied. TUSK systems consist of a rigid-winged kite, or glider, moving in an ocean current. One proposed concept uses a tethered kite which is connected by a flexible tether to a support structure with a generator on the ocean surface. The numerical simulation models the flow field in a three-dimensional domain near the rigid undersea kite wing by solving the full Navier-Stokes equations. A two-step projection method along with Open Multi-Processing (OpenMP) is employed to solve the flow equations. In order to track the rigid kite, an immersed boundary method is used. A NACA 0021 airfoil is used for the cross section shape of the kite, and the tension forces in the elastic tethers are modeled by a simple Hooke’s law. A grid refinement study has been carried out to ensure the independence of the numerical results on the grid mesh resolution. Also, the Reynolds number independency has been studied. PID control methods are used to adjust the kite pitch, roll and yaw angles during power (tether reel-out) and retraction (reel-in) phases to obtain desired kite trajectories. During the reel-out phase the kite moves in successive cross-current motions in a figure-8 pattern, the tether length increases and power is generated. During reel-in the kite motion is along the tether, and kite hydrodynamic forces are reduced so that net positive power is produced. Kite trajectories, hydrodynamic forces on the kite, kite tether tension and output power are determined and analyzed for a baseline TUSK simulation.


Author(s):  
Amirmahdi Ghasemi ◽  
David J. Olinger ◽  
Gretar Tryggvason

In this paper, a numerical simulation of three-dimensional motion of tether undersea kites (TUSK) for power generation is studied. TUSK systems includes a rigid-winged kite, or glider, moving in an ocean current in which a tethered kite is connected by a flexible tether to a fixed structure. Kite hydrodynamic forces are transmitted through the tether to an electrical generator on the fixed structure. The numerical simulation models the flow field in a three-dimensional domain near the rigid undersea kite wing by solving the full Navier-Stokes equations. In order to resolve the boundary layer near the kite surface, adequate grid resolution is needed which increases the computational run time drastically especially in 3D simulations. Therefore, in this study a slip boundary condition is implemented at the kite interface to accurately predict the total drag, with lower grid resolution. In order to reduce the numerical run times, a moving computational domain method is also used. A PID controller is used to adjuste the kite pitch, roll and yaw angles during power (tether reel-out) and retraction (reel-in) phases. A baseline simulation study of a full-scale TUSK system is conducted in which the expected cross-current, figure-8 motions during a kite reel-out phase is captured. The effect of the tether drag on the kite motion and resulting power output is also investigated and compared with the results of the baseline simulation.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Amirmahdi Ghasemi ◽  
David J. Olinger ◽  
Gretar Tryggvason

The dynamic motion of tethered undersea kites (TUSK) is studied using numerical simulations. TUSK systems consist of a rigid winged-shaped kite moving in an ocean current. The kite is connected by tethers to a platform on the ocean surface or anchored to the seabed. Hydrodynamic forces generated by the kite are transmitted through the tethers to a generator on the platform to produce electricity. TUSK systems are being considered as an alternative to marine turbines since the kite can move at a high-speed, thereby increasing power production compared to conventional marine turbines. The two-dimensional Navier–Stokes equations are solved on a regular structured grid to resolve the ocean current flow, and a fictitious domain-immersed boundary method is used for the rigid kite. A projection method along with open multiprocessing (OpenMP) is employed to solve the flow equations. The reel-out and reel-in velocities of the two tethers are adjusted to control the kite angle of attack and the resultant hydrodynamic forces. A baseline simulation, where a high net power output was achieved during successive kite power and retraction phases, is examined in detail. The effects of different key design parameters in TUSK systems, such as the ratio of tether to current velocity, kite weight, current velocity, and the tether to kite chord length ratio, are then further studied. System power output, vorticity flow fields, tether tensions, and hydrodynamic coefficients for the kite are determined. The power output results are shown to be in good agreement with the established theoretical results for a kite moving in two dimensions.


Author(s):  
Amirmahdi Ghasemi ◽  
David J. Olinger ◽  
Gretar Tryggvason

The dynamic motion of tethered undersea kites (TUSK) is studied using numerical simulations. TUSK systems consist of a rigid-winged kite moving in an ocean current. The kite is connected by tethers to a platform on the ocean surface or anchored to the seabed. Hydrodynamic forces generated by the kite are transmitted through the tethers to a generator on the platform to produce electricity. TUSK systems are being considered as an alternative to marine turbines since the kite can move in high speed motions to increase power production compared to conventional marine turbines. The two-dimensional Navier-Stokes equations are solved on a regular structured grid that comprises the ocean current flow, and an immersed boundary method is used for the rigid kite. A two-step projection method along with Open Multi-Processing (OpenMP) is employed to solve the flow equations. The reel-out and reel-in velocities of the two tethers are adjusted to control the kite angle of attack and the resultant hydrodynamic forces. A baseline simulation was studied where a high net power output was achieved during successive kite power and retraction phases. System power output, vorticity flow fields, tether tensions, and hydrodynamic coefficients for the kite are determined. The power output results are in good agreement with established theoretical results for a kite moving in two dimensions.


2014 ◽  
Vol 17 (1) ◽  
pp. 146-188 ◽  
Author(s):  
Miloslav Feistauer ◽  
Jaromír Horáček ◽  
Petr Sváček

AbstractThe subject of the paper is the numerical simulation of the interaction of two-dimensional incompressible viscous flow and a vibrating airfoil with large amplitudes. The airfoil with three degrees of freedom performs rotation around an elastic axis, oscillations in the vertical direction and rotation of a flap. The numerical simulation consists of the finite element solution of the Reynolds averaged Navier-Stokes equations combined with Spalart-Allmaras or κ–ω turbulence models, coupled with a system of nonlinear ordinary differential equations describing the airfoil motion with consideration of large amplitudes. The time-dependent computational domain and approximation on a moving grid are treated by the Arbitrary Lagrangian-Eulerian formulation of the flow equations. Due to large values of the involved Reynolds numbers an application of a suitable stabilization of the finite element discretization is employed. The developed method is used for the computation of flow-induced oscillations of the airfoil near the flutter instability, when the displacements of the airfoil are large, up to ±40 degrees in rotation. The paper contains the comparison of the numerical results obtained by both turbulence models.


2015 ◽  
Vol 15 (7) ◽  
pp. 1483-1492 ◽  
Author(s):  
K. Schraml ◽  
B. Thomschitz ◽  
B. W. McArdell ◽  
C. Graf ◽  
R. Kaitna

Abstract. Predicting potential deposition areas of future debris-flow events is important for engineering hazard assessment in alpine regions. To this end, numerical simulation models are commonly used tools. However, knowledge of appropriate model parameters is essential but often not available. In this study we use two numerical simulation models, RAMMS–DF (rapid mass movement system–debris-flow) and DAN3D (dynamic analysis of landslides in three dimensions), to back-calculate two well-documented debris-flow events in Austria and to compare the range and sensitivity of input parameters for the Voellmy flow model. All simulations are based on the same digital elevation models and similar boundary conditions. Our results show that observed deposition patterns are best matched with a parameter set of μ [–] and ξ [m s-2], ranging between 0.07 to 0.11 and 200 to 300 m s-2, respectively, for RAMMS–DF, and between 0.07 to 0.08 and 300 to 400 m s-2, respectively, for DAN3D. Sensitivity analysis shows a higher sensitivity of model parameters for the DAN3D model than for the RAMMS–DF model. This contributes to the evaluation of realistic model parameters for simulation of debris-flows in steep mountain catchments and highlights the sensitivity of the models.


2011 ◽  
Vol 233-235 ◽  
pp. 701-706
Author(s):  
Bing Tao Zhao ◽  
Yi Xin Zhang ◽  
Kai Bin Xiong

The numerical simulation of the fluid flow is presented by CFD technique to characterize the flow pattern of cyclone spray scrubber. In this process, the Reynolds-averaged Navier-Stokes equations with the Reynolds stress turbulence model (RSM) for fluid flow are solved by use of the finite volume method based on the SIMPLE pressure correction algorithm in the fluid computational domain. According to the computational results, the tangential velocity, axial velocity and turbulence intensity of the gas flow are addressed in the different flowrate. The results indicate that the CFD method can effectively reveal the mechanism of gas flow in the cyclone spray scrubber.


2014 ◽  
Vol 764 ◽  
pp. 148-170 ◽  
Author(s):  
Christopher Koehler ◽  
Philip Beran ◽  
Marcos Vanella ◽  
Elias Balaras

AbstractFlows produced by a circular cylinder undergoing oscillatory rotation and translation in a quiescent fluid have been studied via direct numerical simulations. The incompressible Navier–Stokes equations were solved for large dimensionless time windows using an immersed boundary method with adaptive Cartesian grid refinement. Parametric studies were conducted in two dimensions on the Reynolds number, Keulegan–Carpenter number and phase shift. In addition to the previously reported net thrust case (Blackburn et al., Phys. Fluids, vol. 11, 1999, pp. 4–6), the study catalogued the appearance of several streaming jet regimes with varying deflection angles, deflected and horizontal vortex shedding regimes, and a double mirrored jet regime with varying inter-jet angles, as well as several chaotic cases. Visualizations are presented to clarify each observed flow regime and to illustrate the parameter space. Connections are drawn between these canonical bluff-body deflected wakes and a similar phenomenon observed in aerofoils oscillating at high reduced frequencies in a cross-flow. Also, the discovery of the streaming jet regimes with varying deflection angles opens the door for using these flows as a low-Reynolds-number propulsive mechanism requiring only a two-degree-of-freedom actuator. Simulation results suggest that the flow phenomena observed in two dimensions persist in three dimensions, despite spanwise fluctuations.


1998 ◽  
Vol 374 ◽  
pp. 379-405 ◽  
Author(s):  
Y. NA ◽  
P. MOIN

A separated turbulent boundary layer over a flat plate was investigated by direct numerical simulation of the incompressible Navier–Stokes equations. A suction-blowing velocity distribution was prescribed along the upper boundary of the computational domain to create an adverse-to-favourable pressure gradient that produces a closed separation bubble. The Reynolds number based on inlet free-stream velocity and momentum thickness is 300. Neither instantaneous detachment nor reattachment points are fixed in space but fluctuate significantly. The mean detachment and reattachment locations determined by three different definitions, i.e. (i) location of 50% forward flow fraction, (ii) mean dividing streamline (ψ=0), (iii) location of zero wall-shear stress (τw=0), are in good agreement. Instantaneous vorticity contours show that the turbulent structures emanating upstream of separation move upwards into the shear layer in the detachment region and then turn around the bubble. The locations of the maximum turbulence intensities as well as Reynolds shear stress occur in the middle of the shear layer. In the detached flow region, Reynolds shear stresses and their gradients are large away from the wall and thus the largest pressure fluctuations are in the middle of the shear layer. Iso-surfaces of negative pressure fluctuations which correspond to the core region of the vortices show that large-scale structures grow in the shear layer and agglomerate. They then impinge on the wall and subsequently convect downstream. The characteristic Strouhal number St=fδ*in/U0 associated with this motion ranges from 0.0025 to 0.01. The kinetic energy budget in the detachment region is very similar to that of a plane mixing layer.


2020 ◽  
Vol 34 ◽  
pp. 41-55
Author(s):  
Y. Chоvniuk ◽  
V. Kravchuk ◽  
A. Moskvitina ◽  
I. Pefteva

Reasonable development and creation of any device in which there is an interaction between the fluid flow and the elements of the flow parts (for example, heat exchangers, transport and power machines, main pipelines), is impossible without detailed information about the characteristics of the flow, about the forces on the surfaces that are around, about vibroacoustic phenomena, etc. Among the various methods of obtaining information about the characteristics of the flow, about the forces on surfaces that are flown around, about vibroacoustic phenomena, an important role is played by theoretical methods that rely on the equation of hydrodynamics and numerous ways to solve them. In this case, the main efforts are aimed at solving the system of Navier-Stokes equations. In this paper, a general method is described for the numerical solution of the problem of unsteady flow of a viscous incompressible fluid in flat channels of an arbitrary shape of heat exchangers. An effective solution to the problem is achieved by using adaptive networks. The mathematical model of the flow is based on the two-dimensional Navier-Stokes equations in the variables "flow function - vortex" and the Poissonequation for pressure, which are solved on the basis of the finite-difference method. A numerical simulation of the fluid flow in a flat curvilinear elbow is carried out at the Reynolds number Re = 1000. This form reflects the most characteristic features of the flow paths of various hydraulic machines, heat exchangers, hydraulic and pipeline systems. The presentation of the numerical results was carried out on the basis of the VISSIM graphic processing package. One of the main problems (difficulties) in the numerical solution of problems of mathematical physics is the representation of boundary conditions for regions of arbitrary shape. The implementation of various artificial methods that are now used in the approximation of both the curvilinear boundaries themselves and the boundary conditions on them can lead to significant losses in the accuracy of the solution. This is especially evident in problems in which solutions in the boundary region have maximum gradients. An effective method for solving this problem is the use of adapted grids for the computational domain. The essence of this method lies in the fact that such a coordinate system, not necessarily orthogonal, is found in which the boundary lines (surfaces) of the region coincide with the coordinate lines (surfaces). In the flat case, the computational domain is transformed into a rectangular one, and the limit curve is displayed on the sides of the rectangle. In practice, the problem of constructing an adapted mesh is reduced to finding functions that describe the mappings of the canonical (rectangular) region onto the region for which the problem was originally formulated, that is, for the two-dimensional case, the functions x (ξ, η), y (ξ, η) are determined.


Sign in / Sign up

Export Citation Format

Share Document