A Multicriteria Approach to Evaluate Solar Assisted District Heating in the German Market

Author(s):  
Mohamed Hany Abokersh ◽  
Manel Vallès ◽  
Luisa F. Cabeza ◽  
Dieter Boer

Abstract Following the ambitious EU plan in cutting the greenhouse emission and replacing conventional heat sources through the presence of renewable energy share inside efficient district heating fields, seasonal storage coupled with district heating plants can have a viable contribution to this goal. However, the performance uncertainty combined with the inadequate assessment regarding the financial potential and the greenhouse emission reduction associated with the deployment of those innovate district heating systems represents a great challenge for sufficiently apply it. Our work tends to explore the prospects for wide-scale deployment of the seasonal storage in the residential sector in the German market. The proposed methodology framework correspondingly based on a multi-objective approach which is applied to optimize the cost against an aggregated environmental metric throughout the life cycle of the proposed system in comparison to their relative conventional heating systems. In this context, the proposed methodology framework is applied to Berlin as a representative for the central European climate zone with consideration for the seasonal and short-term storage systems and their relatively load profiles. The environmental improvement associated with the solar district heating system (SDHS) coupled with seasonal storage in the central European climate zone is heavily weighed enough in decision making for proposing SDHS as a sustainable solution replacing the conventional heat sources. Furthermore, the proposed methodology framework successes in eliminating the yearly system variation. Thus, the yearly solar fraction never goes down below than 97.8% in the investigated climate zone. Overall this study can assist in approving the feasibility of the SDHS with the goal of establishing a more sustainable energy infrastructure in Germany.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3218
Author(s):  
Pedro Durán ◽  
Herena Torio ◽  
Patrik Schönfeldt ◽  
Peter Klement ◽  
Benedikt Hanke ◽  
...  

There are 1454 district heating systems in Germany. Most of them are fossil based and with high temperature levels, which is neither efficient nor sustainable and needs to be changed for reaching the 2050 climate goals. In this paper, we present a case study for transforming a high to low temperature district heating system which is more suitable for renewable energy supply. With the Carnot Toolbox, a dynamic model of a potential district heating system is simulated and then transformed to a low temperature supply. A sensitivity analysis is carried out to see the system performance in case space constrains restrict the transformation. Finally, an economic comparison is performed. Results show that it is technically possible to perform the transformation until a very low temperature system. The use of decentralized renewable sources, decentralized heat storage tanks and the placement of a heat pump on each building are the key points to achieve the transformation. Regarding the sensitivity analysis, the transformation is worth doing until the seasonal storage and solar collector field sizes are reduced to 60% and 80% of their values in the reference case, respectively. The economic analysis shows, however, that it is hard for highly efficient low temperature renewable based heat networks to compete with district heating systems based on a centralized fossile CHP solution. Thus, though the presented transformation is technically possible, there is a strong need to change existing economic schemes and policies for fostering a stronger promotion of renewable energy policies in the heat sector.


2019 ◽  
Vol 102 ◽  
pp. 02006
Author(s):  
Ivan Postnikov ◽  
Andrey Penkovskii

The paper the one of current problem of transition of district heating systems (DHS) to the new type of intelligent and integrated systems. This problem is related to the implementation the technology of prosumer, which allows regulating its own heat loading ensuring the most efficiency heating modes by using its own heat sources (HS) and/or heat storages. The statement of considered problem is formulated as the search of the optimal loading relation between the own distributed HS of prosumer and the district HS of DHS, based on the criterion of minimal cost on heating to prosumer for each calculated time interval during the heating period. The practical researches based on calculating experiment using the test scheme of DHS is provided. The results of calculations are presented as diagram of prosumer’s and district HS loading for the considered DHS scheme, as well as the economic benefit when using distributed generation of prosumers.


2018 ◽  
Vol 45 ◽  
pp. 00005 ◽  
Author(s):  
Bożena Babiarz ◽  
Paweł Kut

District heating systems as strategic objects from the point of view of state security must ensure reliability and security in supply of heat to their customers [1, 2]. Thanks to computer simulation methods, district heating companies can analyse the operation of the heating networks at the design and operation stage. Computer simulations also offer a wide range of possibilities in the aspect of optimization of the district heating operation as well as prediction and analysis of network failure effects [3-6]. The paper concerns the simulation of a district heating network. The methods for the simulation of heating networks were characterized and simulations of district heating system were carried out. The effects of the failure were analysed at different values of outside temperatures and for different durations of failure. The value of compensation for undelivered heat was also determined. Simulations were carried out for an actual district heating system located in Rzeszow.


Author(s):  
Krzysztof Badyda ◽  
Wojciech Bujalski ◽  
Jarosław Milewski ◽  
Michał Warchoł

Heat accumulators in large district heating systems are used to buffer heat production. Their main purpose is to make heat production as independent as possible from district heating system demand. To do this effectively a heat accumulator of appropriate capacity must be selected. In large district heating systems, heat accumulators can be used for equalising production over periods lasting a few hours. Accumulators can be used for optimising electricity and heat production to achieve possible highest income. It may be important in situations where on-line prices change. An optimising algorithm for heat accumulator use is shown and commented. Typical working situations are simulated and results presented.


2014 ◽  
Vol 638-640 ◽  
pp. 2101-2105
Author(s):  
Lin Hua Zhang ◽  
Dong Yang ◽  
Ting Ting Chen ◽  
Shou Jun Zhou ◽  
Ling Liu

In this paper, we shall first briefly introduce the hydraulic junction of three-sources branched heat-supply network and the related optimization method. It's difficult to guarantee that the system runs in optimal state and it increases energy consumption in the system. In view of this situation this paper proposes a method to find the optimal positions of hydraulic intersections based on analyzing a real heating system with three heat sources in Jining. The optimization objective is to minimize the electric power consumption of circulating water pumps in district heating system. Finally, optimization programs are designed and the optimized results verify the feasibility and validity of the method compared with conventional experience values.


2021 ◽  
Vol 136 (1) ◽  
Author(s):  
Eero Hirvijoki ◽  
David Pfefferlé ◽  
Manasvi Lingam

AbstractThis paper assesses the potential of intermediate-to-deep geothermal wells for district heating purposes in non-hot spot regions as a means for replacing carbon-intensive heat sources. In analysing the problem of heat transfer from the bedrock to a flowing coolant in the well, we perform parameter scans to assess the longevity and power density of different-size wells and derive analytical estimates to explain salient characteristics of the well behaviour. The results are then utilized to illustrate how intermediate-to-deep geothermal wells would compare with the requirements of typical large-scale district heating systems, by using the city of Helsinki in Finland as an example.


2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3673-3684
Author(s):  
Borna Doracic ◽  
Marino Grozdek ◽  
Tomislav Puksec ◽  
Neven Duic

District heating systems already play an important role in increasing the sustainability of the heating sector and decreasing its environmental impact. However, a high share of these systems is old and inefficient and therefore needs to change towards the 4th generation district heating, which will incorporate various energy sources, including renewables and excess heat of different origins. Especially excess heat from industrial and service sector facilities is an interesting source since its potential has already been proven to be highly significant, with some researches showing that it could cover the heat demand of the entire residential and service sector in Europe. However, most analyses of its utilisation in district heating are not done on the hourly level, therefore not taking into account the variability of its availability. For that reason, the main goal of this work was to analyse the integration of industrial excess heat into the district heating system consisting of different configurations, including the zero fuel cost technologies like solar thermal. Furthermore, cogeneration units were a part of every simulated configuration, providing the link to the power sector. Excess heat was shown to decrease the operation of peak load boiler and cogeneration, that way decreasing the costs and environmental effect of the system. However, since its hourly availability differs from the heat demand, thermal storage needs to be implemented in order to increase the utilisation of this source. The analysis was performed on the hourly level in the energyPRO software


Sign in / Sign up

Export Citation Format

Share Document