Fluttering Amplitude Amplification by Utilizing Flapping Moment in Flutter-Driven Triboelectric Nanogenerator

Author(s):  
Yi Zhang ◽  
Ka Chung Chan ◽  
Sau Chung Fu ◽  
Christopher Yu Hang Chao

Abstract Flutter-driven triboelectric nanogenerator (FTENG) is one of the most promising methods to harvest small-scale wind energy. Wind causes self-fluttering motion of a flag in the FTENG to generate electricity by contact electrification. A lot of studies have been conducted to enhance the energy output by increasing the surface charge density of the flag, but only a few researches tried to increase the converting efficiency by enlarging the flapping motion. In this study, we show that by simply replacing the rigid flagpole in the FTENG with a flexible flagpole, the energy conversion efficiency is augmented and the energy output is enhanced. It is found that when the flag flutters, the flagpole also undergoes aerodynamic force. The lift force generated from the fluttering flag applies a periodic rotational moment on the flagpole, and causes the flagpole to vibrate. The vibration of the flagpole, in turn amplifies the flutter of the flag. Both the fluttering dynamics of the flags with rigid and flexible flagpoles have been recorded by a high-speed camera. When the flag was held by a flexible flagpole, the fluttering amplitude and the contact area between the flag and electrode plates were increased. The energy enhancement increased as the flow velocity increased and the enhancement can be 113 times when the wind velocity is 10 m/s. The thickness of the flagpole was investigated. An optimal output of open-circuit voltage reaching 1128 V (peak-to-peak value) or 312.40 V (RMS value), and short-circuit current reaching 127.67 μA (peak-to-peak value) or 31.99 μA (RMS value) at 12.21 m/s flow velocity was achieved. This research presents a simple design to enhance the output performance of an FTENG by amplifying the fluttering amplitude. Based on the performance obtained in this study, the improved FTENG has the potential to apply in a smart city for driving electronic devices as a power source for IoT applications.

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lingjie Xie ◽  
Xiaoping Chen ◽  
Zhen Wen ◽  
Yanqin Yang ◽  
Jihong Shi ◽  
...  

Abstract Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers. In this work, we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator (FST–TENG) based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer. Owing to the great robustness and continuous conductivity, the FST–TENGs demonstrate high stability, stretchability, and even tailorability. For a single device with ~ 6 cm in length and ~ 3 mm in diameter, the open-circuit voltage of ~ 59.7 V, transferred charge of ~ 23.7 nC, short-circuit current of ~ 2.67 μA and average power of ~ 2.13 μW can be obtained at 2.5 Hz. By knitting several FST–TENGs to be a fabric or a bracelet, it enables to harvest human motion energy and then to drive a wearable electronic device. Finally, it can also be woven on dorsum of glove to monitor the movements of gesture, which can recognize every single finger, different bending angle, and numbers of bent finger by analyzing voltage signals.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2763
Author(s):  
Xiaotao Han ◽  
Qiyuan Zhang ◽  
Junbin Yu ◽  
Jinsha Song ◽  
Zhengyang Li ◽  
...  

In this paper, we designed a triboelectric acceleration sensor with excellent multiple parameters. To more easily detect weak vibrations, the sensor was founded on a multilayer suspension structure. To effectively improve the electrical properties of the sensor, a surface roughening and internal doping friction film, which was refined with a room temperature vulcanized silicone rubber (RTV) and some thermoplastic polyurethanes (TPU) powder in a certain proportion, was integrated into the structure. It was found that the optimization of the RTV film increases the open circuit voltage and short circuit current of the triboelectric nanogenerator (TENG) by 223% and 227%, respectively. When the external vibration acceleration is less than 4 m/s2, the sensitivity and linearity are 1.996 V/(m/s2) and 0.999, respectively. Additionally, when it is in the range between 4 m/s2 and 15 m/s2, those are 23.082 V/(m/s2) and 0.975, respectively. Furthermore, the sensor was placed in a simulated truck vibration environment, and its self-powered monitoring ability validated by experiments in real time. The results show that the designed sensor has strong practical value in the field of monitoring mechanical vibration acceleration.


Proceedings ◽  
2020 ◽  
Vol 32 (1) ◽  
pp. 23
Author(s):  
Watcharapong Paosangthong ◽  
Mahmoud Wagih ◽  
Russel Torah ◽  
Steve Beeby

This paper demonstrates a novel design of textile-based triboelectric nanogenerator (TENG), which is compatible with standard textile manufacturing. The device can convert kinetic energy occurring during frictional contact between two dissimilar materials into electricity based on contact electrification and the electrostatic induction effect. The TENG can generate an RMS open-circuit voltage of 136 V, an RMS short-circuit current of 2.68 µA and a maximum RMS power of 125 µW (38.8 mW/m2). To demonstrate practical applications, the TENG was embedded into a lab coat. The energy is generated from the relative movement between the arm and torso. Its output was used to drive a digital watch, a wearable night-time warning indicator for pedestrians, a wireless transmitter and a pedometer.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Lu Cheng ◽  
Yi Xi ◽  
Chenguo Hu ◽  
Xule Yue ◽  
Guo Wang

AbstractAs we known, nanogenerator (NG) can be used in many fields, such as sensors, energy harvesting, biomedical application, and so on. Sometimes, the object that is a part of NG cannot be electrically connected to the load because it is a mobile object. To harvest energy from such a case and reduce the fabrication cost and achieve some new applications such as touch screen products, we need to find new method to fabricate NG. To attain the higher output current and output power, moreover, here we report a flexible and easy fabricated single electrode triboelectric nanogenerator (TENG) based on polydimethylsiloxane (PDMS) and silver (Ag) nanowires (NWs). Due to Ag NWs high specific surface area, the electrical conductivity of Ag NWs is better than the block of Ag, and PDMS is the transparent and flexible. The single electrode TENG not only can harvest energy from environment but also is a self-powered sensor for detecting acceleration from different angles. This TENG can attain an open-circuit voltage up to 330 V, a maximum short-circuit current of 15.5 μ A (2.6 μ A/cm


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yoseop Shin ◽  
Sungjun Cho ◽  
Sejin Han ◽  
Gun Young Jung

AbstractTriboelectric nanogenerators (TENGs) are actively being researched and developed to become a new external power unit for various electronics and applications. Wind is proposed as a mechanical energy source to flutter the dielectric film in wind-driven TENGs as it is clean, abundant, ubiquitous, and sustainable. Herein, we propose a TENG structure with dielectric films bent in four directions to collect the wind energy supply from all directions, unlike the conventional wind-driven TENGs which can only harvest the wind energy from one direction. Aluminum (Al) layer was intercalated within the dielectric film to improve electrostatic induction, resulting in improved triboelectric performances. Maximum open-circuit voltage (Voc) of 233 V, short-circuit current (Isc) of 348 µA, and output power density of 46.1 W m− 2 at an external load of 1 MΩ under a wind speed of 9 m s− 1 were revealed, and it faithfully lit “LED” characters composed of 25 LEDs.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1689
Author(s):  
Xi Han ◽  
Dongjie Jiang ◽  
Xuecheng Qu ◽  
Yuan Bai ◽  
Yu Cao ◽  
...  

Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge (Qsc), open-circuit voltage (Voc), and short-circuit current (Isc) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm−2 when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1120
Author(s):  
Dae Sol Kong ◽  
Jae Yeon Han ◽  
Young Joon Ko ◽  
Sang Hyeok Park ◽  
Minbaek Lee ◽  
...  

While sliding-mode triboelectric nanogenerators (S-TENGs) have been considered as one of the most promising devices for rotational energy harvesting, their inherently poor durability has been a serious bottleneck for applications. Herein, we report a three-dimensional kirigami TENG as a highly efficient and durable rotational energy harvesting device. The kirigami TENG consisted of cube-shaped paper, aluminum (Al) foil electrode and polytetrafluoroethylene (PTFE) polymer film, and converted rotational motion into multiple folding-unfolding vibrations. The rotation-folding (R-F) kirigami TENG generated an open-circuit voltage of 31 V, a short-circuit current of 0.67 μA and an instantaneous power (power density) of 1.2 μW (0.13 μW/cm2) at 200 rpm, which was sufficient to turn on 25 light-emitting diodes and a thermo-hygrometer. The triboelectric outputs of the R-F kirigami TENG were only slightly decreased even after 288,000 continuous rotations, i.e., the output remained at 86% of its initial value. This work demonstrates that an R-F kirigami TENG could be a plausible candidate to efficiently harvest various forms of rotational energy with a long-term durability.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 656 ◽  
Author(s):  
Zhumei Tian ◽  
Guicheng Shao ◽  
Qiong Zhang ◽  
Yanan Geng ◽  
Xi Chen

Triboelectric nanogenerators with the function of harvesting human motion energy have attracted wide attention. Here, we demonstrate a shared-electrode and nested-tube structure triboelectric nanogenerator (SNTN) for harvesting human motion energy. The design of the SNTN employs flexible silicone rubber as the negative friction material and Ni-coated polyester conductive textile as the positive friction material and the electrode material. The entire structure consists of an inner triboelectric unit and an outer triboelectric unit. The inner triboelectric unit is formed by a hollow inner tube and a hollow middle tube, while the hollow middle tube and a hollow outer tube constitute the outer triboelectric unit. The hollow middle tube is used as the shared tube, and the electrode in the middle tube is used as the shared electrode of the two triboelectric units. Our research demonstrates that the output performance of the SNTN was improved significantly compared with a single triboelectric unit due to the cooperation of the two triboelectric units. When the SNTN is pressed by 300 N external force, output open-circuit voltage of 180 V and output short-circuit current of 8.5 μA can be obtained. The output electrical energy can light up 31 light-emitting diodes (LEDs) connected serially (displaying “XZTC”) and can drive a digital clock after rectifying storage, which shows application prospects in the field of illuminating devices and portable electronics.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 613 ◽  
Author(s):  
Tao Chen ◽  
Qiongfeng Shi ◽  
Kunpu Li ◽  
Zhan Yang ◽  
Huicong Liu ◽  
...  

Triboelectric nanogenerator (TENG) is a promising technology because it can harvest energy from the environment to enable self-sustainable mobile and wearable electronic devices. In this work, we present a flexible touch pad capable of detecting the contact location of an object and generating substantial energy simultaneously based on the coupling of triboelectric effects and electrostatic induction. The touch pad consists of Polytetrafluoroethylene (PTFE) thin film, multiple Aluminum (Al) electrodes and Polyethylene terephthalate (PET) layers, which can be achieved through low cost, simplified and scalable fabrication process. Different from the conventional multi-pixel-based positioning sensor (i.e., large array of sensing elements and electrodes), the analogue method proposed here is used to implement the positioning function with only four electrodes. Position location can achieve a detecting resolution of as small as 1.3 mm (the size of locating layer is 7.5 cm × 7.5 cm). For the energy harvesting part, a multilayer structure is designed to provide higher current output. The open circuit voltage of the device is around 420 V and the short circuit current can reach up to 6.26 µA with current density of 0.25 µA/cm2. The maximum output power obtained is approximately 10 mW, which is 0.4 mW/cm2. The flexibility and significantly reduced number of electrodes enable the proposed touch pad to be readily integrated into portable electronic devices, such as intelligent robots, laptops, healthcare devices, and environmental surveys, etc.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 332
Author(s):  
Qiang Li ◽  
Xianhui An ◽  
Xueren Qian

Cellulose fiber (CelF) is a biodegradable and renewable material with excellent performance but negligible triboelectric polarizability. Methods to enhance and rationally tune the triboelectric properties of CelF are needed to further its application for energy harvesting. In this work, methyl-orange-doped polypyrrole (MO-PPy) was in situ coated on CelF as a mediating layer to promote the growth of metal–organic framework ZIF-8 and to construct a cellulose-based triboelectric nanogenerator (TENG). The results showed that a small amount of MO-PPy generated in situ significantly promoted the growth of ZIF-8 on CelF, and the ZIF-8 deposition ratio was able to increase from 7.8% (ZIF-8/CelF) to 31.8% (ZIF-8/MO-PPy@CelF). ZIF-8/MO-PPy@CelF remained electrically conductive and became triboelectrically positive, and the triboelectricity’s positivity was improved with the increase in the ZIF-8 deposition ratio. The cellulose-based TENG constructed with ZIF-8/MO-PPy@CelF (31.8% ZIF-8 deposition ratio) and polytetrafluoroethylene (PTFE) could generate a transfer charge of 47.4 nC, open-circuit voltage of 129 V and short-circuit current of 6.8 μA—about 4 times higher than those of ZIF-8/CelF (7.8% ZIF-8 deposition ratio)—and had excellent cycling stability (open-circuit voltage remained almost constant after 10,000 cycles). MO-PPy not only greatly facilitated the growth of ZIF-8 on CelF, but also acted as an electrode active phase for TENG. The novel TENG based on ZIF-8/MO-PPy@CelF composite has cheerful prospects in many applications, such as self-powered supercapacitors, sensors and monitors, smart pianos, ping-pong tables, floor mats, etc.


Sign in / Sign up

Export Citation Format

Share Document