Numerical Simulation of Combustion in a Cylindrical Porous Medium

Author(s):  
A. A. Mohamad

Convectional free flame combustion causes the temperature rise in the vicinity of the flame to be very steep, resulting in high temperatures, consequently NOx formation enhances. The fact is that the thermal conductivity of gases are very low, i.e., poor thermal conductors. Combustion in porous media elevates this problem by enhancing heat conduction and thermal radiation from the flame zone, which reduces the flame temperature and NOx formation. Also, heat transfer from the free flame to a load is mainly by convection, while heat transfer is by convection and radiation from combustion zone in porous medium to a load. Moreover, it is easy to stabilize the flame in a porous medium, where the thermophysical properties of the porous medium can engineered for specific application. Most of the work is done on flat type porous burner, where the axial flow of gaseous fuel air mixture forces through a layer of porous medium. In this report a concept of cylindrical porous burner is introduced, where the fuel air mixture is forced to flow radially. Mathematical models and simulation results are introduced for both burners, axial and radial flow burners. Preliminary results of the comparison between the thermal performances between the mentioned burners are discussed. The results revealed that the cylindrical burner has superiority over the convectional flat burner. The cylindrical burner has a wide range stability limits and may produce less NOx than the flat type burners.

Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


2018 ◽  
Vol 7 (4) ◽  
pp. 287-301
Author(s):  
Kourosh Parand ◽  
Yasaman Lotfi ◽  
Jamal Amani Rad

AbstractIn the present work, the problem of Hiemenz flow through a porous medium of a incompressible non-Newtonian Rivlin-Ericksen fluid with heat transfer is presented and newly developed analytic method, namely the homotopy analysis method (HAM) is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. This flow impinges normal to a plane wall with heat transfer. It has been attempted to show capabilities and wide-range applications of the homotopy analysis method in comparison with the numerical method in solving this problem. Also the convergence of the obtained HAM solution is discussed explicitly. Our reports consist of the effect of the porosity of the medium and the characteristics of the Non-Newtonian fluid on both the flow and heat.


2005 ◽  
Author(s):  
Liping Cheng ◽  
Andrey V. Kuznetsov

This paper investigates numerically heat transfer in a helical pipe filled with a fluid saturated porous medium. The analysis is based on the full momentum equation for porous media that accounts for the Brinkman and Forchheimer extensions of the Darcy law as well as for the flow inertia. Numerical computations are performed in an orthogonal helical coordinate system. The effects of the Darcy number, the Forchheimer coefficient as well as the Dean and Germano numbers on the axial flow velocity, secondary flow, temperature distribution, and the Nusselt number are analyzed.


1962 ◽  
Vol 84 (2) ◽  
pp. 97-104 ◽  
Author(s):  
K. M. Becker ◽  
Joseph Kaye

The present paper is part of the second phase of an investigation of the phenomena and variables which control the rate of heat transfer in the air gap of a rotating electrical machine. Experimental data for diabatic flow in an annulus are summarized and compared with the results of previous studies. The data are examined in terms of the types of flow processes occurring in an annulus, and it is found that the results for diabatic flow clearly confirm those obtained for adiabatic flow in showing the existence of three, and possibly four, modes of flow in this annulus. These modes are: (1) Laminar flow; (2) laminar-plus-Taylor-vortexes flow; (3) turbulent flow; (4) turbulent-plus-vortexes flow. The heat-transfer data were subdivided into the following two limiting cases and one general case: Case A. Axial flow with zero rotation. Case B. Rotation of inner cylinder with zero axial flow. Case C. General case of combined axial flow and rotation. The heat-transfer data from this study and of previous investigations were correlated in terms of Reynolds number and Taylor number over a wide range of these variables in terms of fairly simple equations. Radial temperature profiles in the annular gap were measured for the diabatic flow and aided in the understanding of the different flow phenomena in the annulus with an inner rotating cylinder.


Author(s):  
Felipe Bolaños ◽  
Dieter Winkler ◽  
Felipe Piringer ◽  
Timothy Griffin ◽  
Rolf Bombach ◽  
...  

The combustion of hydrogen-rich fuels (> 80 % vol. H2), relevant for gas turbine cycles with “pre-combustion” carbon capture, creates great challenges in the application of standard lean premix combustion technology. The significant higher flame speed and drastically reduced auto-ignition delay time of hydrogen compared to those of natural gas, which is normally burned in gas turbines, increase the risk of higher NOX emissions and material damage due to flashback. Combustion concepts for gas turbines operating on hydrogen fuel need to be adapted to assure safe and low-emission combustion. A rich/lean (R/L) combustion concept with integrated heat transfer that addresses the challenges of hydrogen combustion has been investigated. A sub-scale, staged burner with full optical access has been designed and tested at gas turbine relevant conditions (flame temperature of 1750 K, preheat temperature of 400 °C and a pressure of 8 bar). Results of the burner tests have confirmed the capability of the rich/lean staged concept to reduce the NOx emissions for undiluted hydrogen fuel. The NOx emissions were reduced from 165 ppm measured without staging (fuel pre-conversion) to 23 ppm for an R/L design having a fuel-rich hydrogen pre-conversion of 50 % at a constant power of 8.7 kW. In the realized R/L concept the products of the first rich stage, which is ignited by a Pt/Pd catalyst (under a laminar flow, Re ≈ 1900) are combusted in a diffusion-flame-like lean stage (turbulent flow Re ≈ 18500) without any flashback risk. The optical accessibility of the reactor has allowed insight into the combustion processes of both stages. Applying OH-LIF and OH*-chemiluminescence optical techniques, it was shown that mainly homogeneous reactions at rich conditions take place in the first stage, questioning the importance of a catalyst in the system, and opening a wide range of optimization possibilities. The promising results obtained in this study suggest that such a rich/lean staged burner with integrated heat transfer could help to develop a new generation of gas turbine burners for safe and clean combustion of H2-rich fuels.


Author(s):  
Seyed Mohammad Hashemi ◽  
Seyed Abdolmehdi Hashemi

Combustion process of the premixed methane–air in a novel combined porous-free flame burner was investigated numerically. Two-dimensional model considering nonequilibrium thermal condition between the gas and solid phases was used and the combustion was simulated using reduced GRI 3.0 multistep chemical kinetics mechanism. To examine the validity of the implemented numerical model, the burner was manufactured and tested. Good agreement between the numerical results and experimental data were observed. Thermal flame thickness, flame stability limit, and thermal efficiency were discussed. Multimode heat transfer in the porous medium including convection, radiation, and conduction were quantified and perused. Results showed that the thermal thickness of laminar free flame established in the perforated portion of the burner was considerably less than thickness of submerged flame stabilized in the porous medium. Predicted results suggested that the flame stability limit was augmented in the combined burner compared to the burner with full porous foam. Analyses of the heat balance showed that the thermal efficiency of the combined porous-free flame burner was less than thermal efficiency of the full porous burner. Comparison of the full porous burner with the novel combined porous-free flame burner demonstrated that the combined burner caused higher stability limits and lower thermal efficiencies.


2006 ◽  
Vol 129 (1) ◽  
pp. 54-65 ◽  
Author(s):  
S. R. Khatami F. ◽  
B. Safavisohi ◽  
E. Sharbati

The applicability and usefulness of combustion in porous media is of much interest due to its competitive combustion efficiency and lower pollutants formation. In the previous works, the focus has been on the effects of combustion and heat transfer parameters such as excess air ratio, thermal power, solid conductivity, convective heat transfer coefficient, and radiation properties on centerline temperature and pollutant formations. A premixed combustion scheme and a fixed porous medium with constant geometrical parameters have been used in these works; therefore, the effects of porous material parameters have been less considered. In this research, the effects of geometrical parameters of porous medium, namely porosity and permeability, on centerline temperature distributions, peak flame temperature, flame structure, and gas mixture preheating have been investigated by numerical methods. To this, a two-dimensional axis-symmetric physical model of porous burner is considered. As the most typical porous burners, a two stage one which has preheating porous zone (PPZ) and combustion porous zone (CPZ) is studied. The continuity, momentum, energy, turbulence, and species transport equations are solved employing a one-step chemical reaction mechanism with an eddy-dissipation model for rate of reactions. The turbulence is modeled with two transport equations which are not considered in similar works. The combustion regime is assumed to be diffusion and combustion parameters are fixed in all cases. Porosity effects on the structure and temperature characteristic of the flame are probed in a wide range for PPZ and CPZ. Critical permeability is defined and permeability effects on flame characters in both of the preheating and combustion regions are studied thoroughly.


Author(s):  
C. C. Ngo ◽  
F. C. Lai

Natural convection from a buried pipe with a layer of backfill is numerically examined in this study. The objective of the present study is to investigate how a change in the permeability of the backfill would affect the flow patterns and heat transfer results. Numerical calculations have covered a wide range of the governing parameters (i.e., 10 ≤ Ra1 ≤ 500 and 0.1 ≤ K1/K2 ≤ 10) for various backfill thicknesses (0.5 ≤ t/ri ≤ 2). The results suggest that a more permeable backfill can minimize the heat loss and confine the flow to a region close to the pipe.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
S. Negin Mortazavi ◽  
Fatemeh Hassanipour

This paper presents an analysis of forced convection flow and heat transfer in triangular ducts containing a porous medium. The porous medium is isotropic and the flow is laminar, fully developed with constant properties. Numerical results for velocity and temperature distribution (in dimensionless format) in the channel are presented for a wide range of porosity, permeability, and apex angles. The effects of apex angle and porous media properties (porosity and permeability) are demonstrated on the velocity and temperature distribution, as well as the friction factor (fRe) and Nusselt numbers in the channel for both Isoflux (NuH) and Isothermal (NuT) boundary conditions. The consistency of our findings has been verified with earlier results in the literature on empty triangular ducts, when the porosity in our models is made to approach one.


Sign in / Sign up

Export Citation Format

Share Document