Study of a Rich/Lean Staged Combustion Concept for Hydrogen at Gas Turbine Relevant Conditions

Author(s):  
Felipe Bolaños ◽  
Dieter Winkler ◽  
Felipe Piringer ◽  
Timothy Griffin ◽  
Rolf Bombach ◽  
...  

The combustion of hydrogen-rich fuels (> 80 % vol. H2), relevant for gas turbine cycles with “pre-combustion” carbon capture, creates great challenges in the application of standard lean premix combustion technology. The significant higher flame speed and drastically reduced auto-ignition delay time of hydrogen compared to those of natural gas, which is normally burned in gas turbines, increase the risk of higher NOX emissions and material damage due to flashback. Combustion concepts for gas turbines operating on hydrogen fuel need to be adapted to assure safe and low-emission combustion. A rich/lean (R/L) combustion concept with integrated heat transfer that addresses the challenges of hydrogen combustion has been investigated. A sub-scale, staged burner with full optical access has been designed and tested at gas turbine relevant conditions (flame temperature of 1750 K, preheat temperature of 400 °C and a pressure of 8 bar). Results of the burner tests have confirmed the capability of the rich/lean staged concept to reduce the NOx emissions for undiluted hydrogen fuel. The NOx emissions were reduced from 165 ppm measured without staging (fuel pre-conversion) to 23 ppm for an R/L design having a fuel-rich hydrogen pre-conversion of 50 % at a constant power of 8.7 kW. In the realized R/L concept the products of the first rich stage, which is ignited by a Pt/Pd catalyst (under a laminar flow, Re ≈ 1900) are combusted in a diffusion-flame-like lean stage (turbulent flow Re ≈ 18500) without any flashback risk. The optical accessibility of the reactor has allowed insight into the combustion processes of both stages. Applying OH-LIF and OH*-chemiluminescence optical techniques, it was shown that mainly homogeneous reactions at rich conditions take place in the first stage, questioning the importance of a catalyst in the system, and opening a wide range of optimization possibilities. The promising results obtained in this study suggest that such a rich/lean staged burner with integrated heat transfer could help to develop a new generation of gas turbine burners for safe and clean combustion of H2-rich fuels.

Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Mangani ◽  
Antonio Asti ◽  
Gianni Ceccherini ◽  
...  

One of the driving requirements in gas turbine design is emissions reduction. In the mature markets (especially the North America), permits to install new gas turbines are granted provided emissions meet more and more restrictive requirements, in a wide range of ambient temperatures and loads. To meet such requirements, design techniques have to take advantage also of the most recent CFD tools. As a successful example of this, this paper reports the results of a reactive 3D numerical study of a single-can combustor for the GE10 machine, recently updated by GE-Energy. This work aims to evaluate the benefits on the flame shape and on NOx emissions of a new pilot-system located on the upper part of the liner. The former GE10 combustor is equipped with fuel-injecting-holes realizing purely diffusive pilot-flames. To reduce NOx emissions from the current 25 ppmvd@15%O2 to less than 15 ppmvd@15%O2 (in the ambient temperature range from −28.9°C to +37.8°C and in the load range from 50% and 100%), the new version of the combustor is equipped with 4 swirler-burners realizing lean-premixed pilot flames; these flames in turn are stabilized by a minimal amount of lean-diffusive sub-pilot-fuel. The overall goal of this new configuration is the reduction of the fraction of fuel burnt in diffusive flames, lowering peak temperatures and therefore NOx emissions. To analyse the new flame structure and to check the emissions reduction, a reactive RANS study was performed using STAR-CD™ package. A user-defined combustion model was used, while to estimate NOx emissions a specific scheme was also developed. Three different ambient temperatures (ISO, −28.9°C and 37.8°C) were simulated. Results were then compared with experimental measurements (taken both from the engine and from the rig), resulting in reasonable agreement. Finally, an additional simulation with an advanced combustion model, based on the laminar flamelet approach, was performed. The model is based on the G-Equation scheme but was modified to study partially premixed flames. A geometric procedure to solve G-Equation was implemented as add-on in STAR-CD™.


1995 ◽  
Vol 117 (4) ◽  
pp. 673-677 ◽  
Author(s):  
C. S. Cook ◽  
J. C. Corman ◽  
D. M. Todd

The integration of gas turbines and combined cycle systems with advances in coal gasification and gas stream cleanup systems will result in economically viable IGCC systems. Optimization of IGCC systems for both emission levels and cost of electricity is critical to achieving this goal. A technical issue is the ability to use a wide range of coal and petroleum-based fuel gases in conventional gas turbine combustor hardware. In order to characterize the acceptability of these syngases for gas turbines, combustion studies were conducted with simulated coal gases using full-scale advanced gas turbine (7F) combustor components. It was found that NOx emissions could be correlated as a simple function of stoichiometric flame temperature for a wide range of heating values while CO emissions were shown to depend primarily on the H2 content of the fuel below heating values of 130 Btu/scf (5125 kJ/NM3) and for H2/CO ratios less than unity. The test program further demonstrated the capability of advanced can-annular combustion systems to burn fuels from air-blown gasifiers with fuel lower heating values as low as 90 Btu/scf (3548 kJ/NM3) at 2300°F (1260°C) firing temperature. In support of ongoing economic studies, numerous IGCC system evaluations have been conducted incorporating a majority of the commercial or near-commercial coal gasification systems coupled with “F” series gas turbine combined cycles. Both oxygen and air-blown configurations have been studied, in some cases with high and low-temperature gas cleaning systems. It has been shown that system studies must start with the characteristics and limitations of the gas turbine if output and operating economics are to be optimized throughout the range of ambient operating temperature and load variation.


Author(s):  
Roda Bounaceur ◽  
Pierre-Alexandre Glaude ◽  
Baptiste Sirjean ◽  
René Fournet ◽  
Pierre Montagne ◽  
...  

Gas turbines burn a large variety of gaseous fuels under elevated pressure and temperature conditions. During transient operations, variable gas/air mixtures are involved in the gas piping system. In order to predict the risk of auto-ignition events and ensure a safe operation of gas turbines, it is of the essence to know the lowest temperature at which spontaneous ignition of fuels may happen. Experimental auto-ignition data of hydrocarbon–air mixtures at elevated pressures are scarce and often not applicable in specific industrial conditions. Auto-ignition temperature (AIT) data correspond to temperature ranges in which fuels display an incipient reactivity, with timescales amounting in seconds or even in minutes instead of milliseconds in flames. In these conditions, the critical reactions are most often different from the ones governing the reactivity in a flame or in high temperature ignition. Some of the critical paths for AIT are similar to those encountered in slow oxidation. Therefore, the main available kinetic models that have been developed for fast combustion are unfortunately unable to represent properly these low temperature processes. A numerical approach addressing the influence of process conditions on the minimum AIT of different fuel/air mixtures has been developed. Several chemical models available in the literature have been tested, in order to identify the most robust ones. Based on previous works of our group, a model has been developed, which offers a fair reconciliation between experimental and calculated AIT data through a wide range of fuel compositions. This model has been validated against experimental auto-ignition delay times corresponding to high temperature in order to ensure its relevance not only for AIT aspects but also for the reactivity of gaseous fuels over the wide range of gas turbine operation conditions. In addition, the AITs of methane, of pure light alkanes, and of various blends representative of several natural gas and process-derived fuels were extensively covered. In particular, among alternative gas turbine fuels, hydrogen-rich gases are called to play an increasing part in the future so that their ignition characteristics have been addressed with particular care. Natural gas enriched with hydrogen, and different syngas fuels have been studied. AIT values have been evaluated in function of the equivalence ratio and pressure. All the results obtained have been fitted by means of a practical mathematical expression. The overall study leads to a simple correlation of AIT versus equivalence ratio/pressure.


Author(s):  
Pierre-Alexandre Glaude ◽  
Baptiste Sirjean ◽  
René Fournet ◽  
Roda Bounaceur ◽  
Matthieu Vierling ◽  
...  

Heavy duty gas turbines are very flexible combustion tools that accommodate a wide variety of gaseous and liquid fuels ranging from natural gas to heavy oils, including syngas, LPG, petrochemical streams (propene, butane…), hydrogen-rich refinery by-products; naphtha; ethanol, biodiesel, aromatic gasoline and gasoil, etc. The contemporaneous quest for an increasing panel of primary energies leads manufacturers and operators to explore an ever larger segment of unconventional power generation fuels. In this moving context, there is a need to fully characterize the combustion features of these novel fuels in the specific pressure, temperature and equivalence ratio conditions of gas turbine combustors using e.g. methane as reference molecule and to cover the safety aspects of their utilization. A numerical investigation of the combustion of a representative cluster of alternative fuels has been performed in the gas phase, namely two natural gas fuels of different compositions, including some ethane, a process gas with a high content of butene, oxygenated compounds including methanol, ethanol, and DME (dimethyl ether). Sub-mechanisms have specifically been developed to include the reactions of C4 species. Major combustion parameters, such as auto-ignition temperature (AIT), ignition delay times (AID), laminar burning velocities of premixed flames, adiabatic flame temperatures, and CO and NOx emissions have then been investigated. Finally, the data have been compared with those calculated for methane flames. These simulations show that the behaviors of alternative fuels markedly differ from that of conventional ones. Especially, DME and the process gases appear to be highly reactive with significant impacts on the auto-ignition temperature and flame speed data, which justifies burner design studies within premixed combustion schemes and proper safety considerations. The behaviors of alcohols (especially methanol) display some commonalities with those of conventional fuels. In contrast, DME and process gas fuels develop substantially different flame temperature and NOx generation rates than methane. Resorting to lean premix conditions is likely to achieve lower NOx emission performances. This review of gas turbine fuels shows for instance that the use of methanol as a gas turbine fuel is possible with very limited combustor modifications.


Author(s):  
Stefan Bauer ◽  
Balbina Hampel ◽  
Thomas Sattelmayer

Vortex generators are known to be effective in augmenting the mixing of fuel jets with air. The configuration investgated in this study is a tubular air passage with fuel injection from one single orifice placed in the side wall. In the range of typical gas turbine combustor inlet temperatures, the performance vortex generator premixers (VGPs) have already been investigated for natural gas as well as for blends of natural gas and hydrogen. However, for highly reactive fuels, the application of VGPs in recuperated gas turbines is particularly challenging because the high combustor inlet temperature leads to potential risk with regard to premature self-ignition and flame flashback. As the current knowledge does not cover the temperature range far above the self-ignition temperature, an experimental investigation of the operational limits of VGPs is currently being conducted at the Thermodynamics Institute of the Technical University of Munich, which is particularly focused on reactive fuels and the thermodynamic conditions present in recuperated gas turbines with pressure ratios of 4–5. For the study presented in the paper, an atmospheric combustion VGP test rig has been designed, which facilitates investigations in a wide range of operating conditions in order to comply with the situation in recuperated micro gas turbines, namely global equivalence ratios between 0.2 and 0.7, air preheating temperatures between 288K and 1100K, and air bulk flow rates between 6–16 g/s. Both the entire mixing zone in the VGP and the primary combustion zone of the test rig are optically accessible. High speed OH* chemiluminescence imaging is used for the detection of the flashback and blow-off limits of the investigated VGPs. Flashback and blow-off limits of hydrogen in a wide temperature range covering the auto-ignition regime are presented, addressing the influences of equivalence ratio, air preheating temperature and momentum ratio between air and hydrogen on the operational limits in terms of bulk flow velocity. It is shown that flashback and blow-off limits are increasingly influenced by auto-ignition in the ultra-high temperature regime.


Author(s):  
Homam Nikpey Somehsaraei ◽  
Mohammad Mansouri Majoumerd ◽  
Mohsen Assadi

As a renewable energy source, biogas produced from anaerobic digestion seems to play an important role in the energy market. Unlike wind and solar, which are intermittent, gas turbines fueled by biogas provide dispatchable renewable energy that can be ramped up and down to match the demand. If post-combustion carbon capture systems are implemented, they can also result in negative CO2 emissions. However, one of the major challenges here is the energy needed for CO2 chemical absorption in post-combustion capture, which is closely related to the concentration of CO2 in the exhaust gas upstream of the capture unit. This paper presents an evaluation of the effects of biogas and exhaust gas recirculation use on the performance of the gas turbine cycle for post-combustion CO2 capture application. The study is based on a combined heat and power micro gas turbine, Turbec T100, delivering 100kWe. The thermodynamic model of the gas turbine has been validated against experimental data obtained from test facilities in Norway and the United Kingdom. Based on the validated model, performance calculations for the baseline micro gas turbine (fueled by natural gas), biogas-fired cases and the cycle with exhaust gas recirculation have been carried out at various operational conditions and compared together. A wide range of biogas composition with varying methane content was assumed for this study. Necessary minor modifications to fuel valves and compressor were assumed to allow the engine operation with different biogas composition. The methodology and results are fully discussed in this paper.


Author(s):  
C. Striegan ◽  
A. Haj Ayed ◽  
K. Kusterer ◽  
H. H.-W. Funke ◽  
S. Loechle ◽  
...  

Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation once it can be combined with the use of renewable energy sources for its production. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested “DLN Micromix” combustion technology offers great potential to burn hydrogen in gas turbines at very low NOx emissions. The mixing of hydrogen and air is based on the jet in cross-flow (JICF) principle, where the gaseous fuel is injected perpendicular into the crossing air stream. The reaction takes place in multiple miniaturized diffusion flames with an inherent safety against flashback and the potential of low NOx emissions due to a short residence time of the reactants in the flame region. Aiming to further develop an existing burner design in terms of an increased energy density, a redesign is required in order to stabilize the flames at higher mass flows while maintaining low emission levels. For this reason, a systematic numerical analysis using CFD is carried out, to identify the interactions of combustion, radiation and heat conduction in the adjacent burner wall by conjugate heat transfer (CHT) methods. Different combustion models are applied, starting from a hybrid eddy break-up model to more advanced turbulence-chemistry interaction approaches considering detailed chemical mechanisms. Those allow an improved prediction of the different NO-pathways of production and consumption. The results of the simulations are in good agreement with atmospheric test rig data of optical flame structure, measured combustor surface temperatures and NOx emissions. The numerical methods help reducing the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field. Further on, the more detailed CFD-simulations support the understanding of decisive mechanisms to reduce the numerical work to the most important models for further industrial applications in future.


Author(s):  
William D. York ◽  
Willy S. Ziminsky ◽  
Ertan Yilmaz

Interest in hydrogen as a primary fuel stream in heavy-duty gas turbine engines has increased as precombustion carbon capture and sequestration (CCS) has become a viable option for integrated gasification combined cycle (IGCC) power plants. The U.S. Department of Energy has funded the Advanced IGCC/Hydrogen Gas Turbine Program since 2005 with an aggressive plant-level NOx target of 2 ppm at 15% O2 for an advanced gas turbine cycle. Approaching this NOx level with highly reactive hydrogen fuel at the conditions required is a formidable challenge that requires novel combustion technology. This study begins by measuring entitlement NOx emissions from perfectly premixed combustion of the high-hydrogen fuels of interest. A new premixing fuel injector for high-hydrogen fuels was designed to balance reliable flashback-free operation, reasonable pressure drop, and low emissions. The concept relies on small-scale jet-in-crossflow mixing that is a departure from traditional swirl-based premixing concepts. Single nozzle rig experiments were conducted at pressures of 10 atm and 17 atm, with air preheat temperatures of about 650 K. With nitrogen-diluted hydrogen fuel, characteristic of carbon-free syngas, stable operation without flashback was conducted up to flame temperatures of approximately 1850 K. In addition to the effects of pressure, the impacts of nitrogen dilution levels and amounts of minor constituents in the fuel—carbon monoxide, carbon dioxide, and methane—on flame holding in the premixer are presented. The new fuel injector concept has been incorporated into a full-scale, multinozzle combustor can with an energy conversion rate of more than 10 MW at F-class conditions. The full-can testing was conducted at full gas turbine conditions and various fuel compositions of hydrogen, natural gas, and nitrogen. This combustion system has accumulated over 100 h of fired testing at full load with hydrogen comprising over 90% of the reactants by volume. NOx emissions (ppm) have been measured in the single digits with hydrogen-nitrogen fuel at target gas turbine pressure and temperatures. Results of the testing show that small-scale fuel-air mixing can deliver a reliable, low-NOx solution to hydrogen combustion in advanced gas turbines.


Author(s):  
A. H. Lefebvre

The attainment of very low pollutant emissions, in particular oxides of nitrogen (NOx), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultra-low NOx has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultra-low emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas turbine generated pollutants and their mechanisms of formation are described, along with related environmental risks and various issues concerning emissions regulations and recently-enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact of these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of “dry” low NOx and ultra-low NOx combustors are reviewed. At the present time lean, premix, prevaporize, combustion appears to be the only technology available for achieving ultra-low NOx emissions from practical combustors. This concept is discussed in some detail, along with its inherent problems of autoignition, flashback, and acoustic resonance. Attention is also given to alternative methods of achieving ultra-low NOx emissions, notably the rich-bum, quick-quench, lean-burn and catalytic combustors. These concepts are now being actively developed, despite the formidable problems they present in terms of mixing and durability. The final section reviews the various correlations which are now being used to predict the exhaust gas concentrations of the main gaseous pollutant emissions from gas turbine engines. Comprehensive numerical methods have not yet completely displaced these semi-empirical correlations but are nevertheless providing useful insight into the interactions of swirling and recirculating flows with fuel sprays, as well as guidance to the combustion engineer during the design and development stages. Throughout the paper emphasis is placed on the important and sometimes pivotal role played by the fuel preparation process in the reduction of pollutant emissions from gas turbines.


Author(s):  
William D. York ◽  
Derrick W. Simons ◽  
Yongqiang Fu

F-class gas turbines comprise a major part of the heavy-duty gas turbine power generation fleet worldwide, despite increasing penetration of H/J class turbines. F-class gas turbines see a wide range of applications, including simple cycle peaking operation, base load combined cycle, demand following in simple or combined cycle, and cogeneration. Because of the different applications, local power market dynamics, and varied emissions regulations by region or jurisdiction, there is a need for operational flexibility of the gas turbine and the combustion system. In 2015, GE introduced a DLN2.6+ combustion system for new and existing 7F gas turbines. Approximately 50 are now in operation on 7F.04 and 7F.05 turbines, combining for nearly 150,000 fired hours. The system has been demonstrated to deliver 5 ppm NOx emissions @ 15% O2, and it exhibits a wide window of operation without significant thermoacoustic instabilities, owing the capability to premixed pilot flames on the main swirl fuel-air premixers, low system residence time, and air path improvements. Based on the success on the 7F, this combustion system is being applied to the 6F.03 in 2018. This paper highlights the flexibility of the 7F and 6F.03 DLN2.6+ combustion system and the enabling technology features. The advanced OpFlex* AutoTune control system tightly controls NOx emissions, adjusts fuel splits to stay clear of instabilities, and gives operators the ability to prioritize emissions or peak load output. Because of the low-NOx capability of the system, it is often being pushed to higher combustor exit temperatures, 35°C or more above the original target. The gas turbine is still meeting 9 or 15 ppm NOx emissions while delivering nearly 12% additional output in some cases. Single-can rig test and engine field test results show a relatively gentle NOx increase over the large range of combustor exit temperature because of the careful control of the premixed pilot fuel split. The four fuel legs are staged in several modes during startup and shutdown to provide robust operation with fast loading capability and low starting emissions, which are shown with engine data. The performance of a turndown-only fueling mode is highlighted with engine measurements of CO at low load. In this mode, the center premixer is not fueled, trading the NOx headroom for a CO emissions benefit that improves turndown. The combustion system has also demonstrated wide-Wobbe capability in emissions compliance. 7F.04 engine NOx and dynamics data are presented with the target heated gas fuel and also with cold fuel, producing a 24% increase in Modified Wobbe Index. The ability to run unheated fuel at base load may reduce the start-up time for a combined cycle plant. Lastly, there is a discussion of a new OpFlex* Variable Load Path digital solution in development that will allow operators to customize the start-up of a combined cycle plant.


Sign in / Sign up

Export Citation Format

Share Document