A Valve-Less Rectification Minipump Based on Dynamic Rectifying Geometries

Author(s):  
Ahmed Fadl ◽  
Stefanie Demming ◽  
Zongqin Zhang ◽  
Stephanus Bu¨ttgenbach ◽  
Manfred Krafczyk ◽  
...  

The advantages of valve-less rectification micro pumps include having no moving parts, low cost, reliable, having the ability to pump particles-laden fluids and live cells, being compatible with a wide range of micro channel materials and working fluids. Most valve-less rectification micro pumps are based on passive rectifying geometries such as a nozzle/diffuser, Tesla (Valvular Conduit), and Bifurcation geometries. In this study, we present a new valve-less rectification minipump based on a dynamic rectifying geometry. The present work includes design, fabrication, and testing of the pump. The experimental results are presented in terms of flow rates and maximum back pressures.

2019 ◽  
Vol 12 (03) ◽  
pp. 1950014 ◽  
Author(s):  
Xibin Yang ◽  
Qian Zhu ◽  
Zhenglong Sun ◽  
Gang Wen ◽  
Xin Jin ◽  
...  

Structured illumination microscopy (SIM) is a promising super-resolution technique for imaging subcellular structures and dynamics due to its compatibility with most commonly used fluorescent labeling methods. Structured illumination can be obtained by either laser interference or projection of fringe patterns. Here, we proposed a fringe projector composed of a compact multi-wavelength LEDs module and a digital micromirror device (DMD) which can be directly attached to most commercial inverted fluorescent microscopes and update it into a SIM system. The effects of the period and duty cycle of fringe patterns on the modulation depth of the structured light field were studied. With the optimized fringe pattern, [Formula: see text] resolution improvement could be obtained with high-end oil objectives. Multicolor imaging and dynamics of subcellular organelles in live cells were also demonstrated. Our method provides a low-cost solution for SIM setup to expand its wide range of applications to most research labs in the field of life science and medicine.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Carl M. Sangan ◽  
Oliver J. Pountney ◽  
Kunyuan Zhou ◽  
J. Michael Owen ◽  
Mike Wilson ◽  
...  

Part I of this two-part paper presented experimental results for externally-induced (EI) ingress, where the ingestion of hot gas through the rim seal into the wheel-space of a gas turbine is controlled by the circumferential variation of pressure in the external annulus. In Part II, experimental results are presented for rotationally-induced (RI) ingress, where the ingestion is controlled by the pressure generated by the rotating fluid in the wheel-space. Although EI ingress is the common form of ingestion through turbine rim seals, RI ingress or combined ingress (where EI and RI ingress are both significant) is particularly important for double seals, where the pressure asymmetries are attenuated in the annular space between the inner and outer seals. In this paper, the sealing effectiveness was determined from concentration measurements, and the variation of effectiveness with sealing flow rate was compared with theoretical curves for RI ingress obtained from an orifice model. Using a nondimensional sealing parameter Φ0 the data could be collapsed onto a single curve, and the theoretical variation of effectiveness with Φ0 was in very good agreement with the data for a wide range of flow rates and rotational speeds. It was shown that the sealing flow required to prevent RI ingress was much less than that needed for EI ingress, and it was also shown that the effectiveness of a radial-clearance seal is significantly better than that for an axial-clearance seal for both EI and RI ingress.


Author(s):  
Hee Joon Lee ◽  
Dongyao Liu ◽  
Shi-Chune Yao ◽  
Y. Alyousef

Existing data base and correlations in literature on the micro-channel pressure drop and heat transfer are reviewed. None of the existing correlations can cover the wide range of working fluids, operational conditions and different microchannel dimensions. The importance of the Bond number, which relates the nominal bubble dimension or capillary parameter with the channel size, is revealed. Using the Bond number, improved correlations of pressure drop and heat transfer are established. The new correlations predict the existing data well over wide ranges of working fluids, operational conditions and dimensions of micro-channels. Furthermore, Bond number could be used as a criterion to classify a flow path as a micro-channel or conventional macro-channel.


BioTechniques ◽  
2020 ◽  
Vol 68 (5) ◽  
pp. 275-278
Author(s):  
Liam P Dow ◽  
Aimal H Khankhel ◽  
John Abram ◽  
Megan T Valentine

We designed and fabricated, using low-cost 3D printing technologies, a device that enables direct control of cell density in epithelial monolayers. The device operates by varying the tension of a silicone substrate upon which the cells are adhered. Multiple devices can be manufactured easily and placed in any standard incubator. This allows long-term culturing of cells on pretensioned substrates until the user decreases the tension, thereby inducing compressive forces in plane and subsequent instantaneous cell crowding. Moreover, the low-profile device is completely portable and can be mounted directly onto an inverted optical microscope. This enables visualization of the morphology and dynamics of living cells in stretched or compressed conditions using a wide range of high-resolution microscopy techniques.


Author(s):  
Carl M. Sangan ◽  
Kunyuan Zhou ◽  
J. Michael Owen ◽  
Oliver J. Pountney ◽  
Mike Wilson ◽  
...  

Part 1 of this two-part paper presented experimental results for externally-induced (EI) ingress, where the ingestion of hot gas through the rim seal into the wheel-space of a gas turbine is controlled by the circumferential variation of pressure in the external annulus. In Part 2, experimental results are presented for rotationally-induced (RI) ingress, where the ingestion is controlled by the pressure generated by the rotating fluid in the wheel-space. Although EI ingress is the common form of ingestion through turbine rim seals, RI ingress or combined ingress (where EI and RI ingress are both significant) is particularly important for double seals, where the pressure asymmetries are attenuated in the annular space between the inner and outer seals. In this paper, the sealing effectiveness was determined from concentration measurements, and the variation of effectiveness with sealing flow rate was compared with theoretical curves for RI ingress obtained from an orifice model. Using a nondimensional sealing parameter, Φ0, the data could be collapsed onto a single curve, and the theoretical variation of effectiveness with Φ0 was in very good agreement with the data for a wide range of flow rates and rotational speeds. It was shown that the sealing flow required to prevent RI ingress was much less than that needed for EI ingress, and it was also shown that the effectiveness of a radial-clearance seal is significantly better than that for an axial-clearance seal for both EI and RI ingress.


2017 ◽  
Author(s):  
David Skelding ◽  
Sam Hart ◽  
Thejas Vidyasagar ◽  
Alexander E. Pozhitkov ◽  
Wenying Shou

AbstractMultiplexed milliliter-scale chemostats are useful for measuring cell physiology under various degrees of nutrient limitation and for experimental evolution. In each chemostat, fresh medium containing a growth rate-limiting metabolite is pumped into the culturing chamber at a constant rate, while culture effluent exits at an equal rate. Although such devices have been developed by various labs, key parameters - the accuracy and precision of flow rate and the operational range - are not explicitly characterized. Here we report the development of multiplexed milliliter-scale chemostats where flow rates for eight chambers can be independently controlled to vary within a wide range, corresponding to population doubling times of 3~ 13 hours. Importantly, flow rates are precise and accurate without the use of expensive feedback systems. Among the eight chambers, the maximal coefficient of variation in flow rate is less than 3%, and average flow rates are only slightly below targets,i.e., 3-6% for 13-hour and 0.6-1.0% for 3-hour doubling times. This deficit is largely due to evaporation and should be correctable. We experimentally demonstrate that our device allows accurate and precise quantification of population phenotypes.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


2015 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Agus Sugiarta ◽  
Houtman P. Siregar ◽  
Dedy Loebis

Automation of process control in chemical plant is an inspiring application field of mechatronicengineering. In order to understand the complexity of the automation and its application requireknowledges of chemical engineering, mechatronic and other numerous interconnected studies.The background of this paper is an inherent problem of overheating due to lack of level controlsystem. The objective of this research is to control the dynamic process of desired level more tightlywhich is able to stabilize raw material supply into the chemical plant system.The chemical plant is operated within a wide range of feed compositions and flow rates whichmake the process control become difficult. This research uses modelling for efficiency reason andanalyzes the model by PID control algorithm along with its simulations by using Matlab.


2020 ◽  
Vol 2020 (15) ◽  
pp. 350-1-350-10
Author(s):  
Yin Wang ◽  
Baekdu Choi ◽  
Davi He ◽  
Zillion Lin ◽  
George Chiu ◽  
...  

In this paper, we will introduce a novel low-cost, small size, portable nail printer. The usage of this system is to print any desired pattern on a finger nail in just a few minutes. The detailed pre-processing procedures will be described in this paper. These include image processing to find the correct printing zone, and color management to match the patterns’ color. In each phase, a novel algorithm will be introduced to refine the result. The paper will state the mathematical principles behind each phase, and show the experimental results, which illustrate the algorithms’ capabilities to handle the task.


1984 ◽  
Vol 19 (1) ◽  
pp. 87-100
Author(s):  
D. Prasad ◽  
J.G. Henry ◽  
P. Elefsiniotis

Abstract Laboratory studies were conducted to demonstrate the effectiveness of diffused aeration for the removal of ammonia from the effluent of an anaerobic filter treating leachate. The effects of pH, temperature and air flow on the process were studied. The coefficient of desorption of ammonia, KD for the anaerobic filter effluent (TKN 75 mg/L with NH3-N 88%) was determined at pH values of 9, 10 and 11, temperatures of 10, 15, 20, 30 and 35°C, and air flow rates of 50, 120, and 190 cm3/sec/L. Results indicated that nitrogen removal from the effluent of anaerobic filters by ammonia desorption was feasible. Removals exceeding 90% were obtained with 8 hours aeration at pH of 10, a temperature of 20°C, and an air flow rate of 190 cm3/sec/L. Ammonia desorption coefficients, KD, determined at other temperatures and air flow rates can be used to predict ammonia removals under a wide range of operating conditions.


Sign in / Sign up

Export Citation Format

Share Document