Vortex-Induced Vibrations of Long Marine Risers in Sheared Flows: DNS Studies

Author(s):  
Didier Lucor ◽  
X. Ma ◽  
M. S. Triantafyllou ◽  
G. E. Karniadakis

The offshore industry is moving to ever-increasing water depths, producing presently oil in depths of up to 2,500m, requiring detailed fatigue calculations for the risers and tendons used in the floating structures, see [1, 2]. Currents in the ocean are invariably highly sheared, hence the modes that can potentially be excited are many, see [3]. The calculation of how many and which modes are excited, can affect fatigue life very significantly, but there are no guidelines presently available for conducting this calculation.

Author(s):  
Arvind Keprate ◽  
R. M. Chandima Ratnayake

A typical procedure for a remnant fatigue life (RFL) assessment is stated in the BS-7910 standard. The aforementioned standard provides two different methodologies for estimating RFL; these are: the S-N curve approach and the crack growth laws (i.e. using Linear Elastic Fracture Mechanics (LEFM) principles) approach. Due to its higher accuracy, the latter approach is more commonly used for RFL assessment in the offshore industry. Nevertheless, accurate prediction of RFL using the deterministic LEFM approach (stated in BS-7910) is a challenging task, as RFL prediction is afflicted with a high number of uncertainties. Furthermore, BS-7910 does not provide any recommendation in regard to handling the uncertainty in the deterministic RFL assessment process. The most common way of dealing with the aforementioned uncertainty is to employ Probabilistic Crack Growth (PCG) models for estimating the RFL. This manuscript explains the procedure for addressing the uncertainty in the RFL assessment of process piping with the help of a numerical example. The numerically obtained RFL estimate is used to demonstrate a calculation of inspection interval.


Author(s):  
Lars Hilmersen

The use of fibre ropes made by synthetic fibres have been used more frequent as the offshore industry is moving towards larger water depths. An important aspect is the effect of handling on the large, but delicate, ropes during installation offshore using tools and equipment that easily can destroy the load bearing capacities of the ropes. In order to get hands on experience in the field large polyester ropes have been used as inserts in catenary mooring lines for Mobile Offshore Units (MODU) working on depths ranging from 80 to 350 meters. The ropes have been integrated in the catenary chain mooring lines both in the suspended part and in the bottom part of the mooring leg thus having been exposed to seafloor clay. Subsea buoy have been attached to the ropes using smaller size fibre ropes in order to lift the mooring lines from the seafloor. The paper will detail how the large fibre ropes have been mobilised and demobilised repeatedly from/to storage drums to/from the installation vessel winch drum. During installation and retrieval the fibre ropes have been installed from the vessels winch drum using regular anchor handling equipment and vessels. When the MODU has been moved between locations some ropes have been retrieved to the vessels winch drums while the others have been used to tow and to keep the units station. Samples of the used ropes are taken and is subjected to a test program in the laboratory in order to document the effect of extensive use and handling and exposure to seabed clay.


Author(s):  
Jian Wen He ◽  
Ying Min Low

Flexible marine risers are compliant to external forces from waves, current and platform motions, and clashing between risers is an important concern. In deepwater developments where the number of connected risers is large, it is not economical to space them too far apart. In this regard, it is necessary to establish the probability of riser clashing throughout the service life; however, at present there appears to be no systematic procedure for assessing this risk. This paper presents a novel procedure for estimating the probability of riser clashing based on post-processing results obtained from time domain simulations of flexible risers subjected to random wave loads. First, an efficient technique is employed to sieve out critical pairs among riser elements. From these element pairs, the time history of a normalized clearance parameter is derived from the nodal displacements of the elements. Subsequently, the mean up-crossing rate of this parameter is extracted and extrapolated to the threshold of clashing using extreme value theory. As this method is still in its early developmental stage, critical effects such as vortex-induced vibrations and wake interference will not be considered in the present work.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Ajith Kumar Thankappan ◽  
M. Fazli B. M. Yusof

This paper highlights the key differences in practices employed in managing hull structure integrity of permanently moored floating offshore structures as against sailing vessels which are subject to periodic dry docking. During the design phase, the structural integrity management over the life of a sailing vessel is primarily taken into account by means of Class prescribed Nominal Design Corrosion Values which are added to minimum scantling requirements calculated based on strength and fatigue criteria. In contrast, for permanently moored offshore installations like FPSOs, FSOs etc. the hull structure integrity over the entire design life of the asset is a key design consideration both for new buildings and conversions. Analytic methods and tools (primarily those developed by Class Societies) are available to evaluate the strength requirements (based on yielding, buckling and ultimate strength criteria) and fatigue life of the hull structure. Typically three levels of analysis with increasing degree of complexity and analysis time are used to predict the structural response and fatigue life of the Hull during design phase. The degree of detailed analysis required needs to be determined in light of the expected optimization in terms of savings in scantlings for new building or for steel renewal requirements in case of conversions.


Author(s):  
F. Van den Abeele ◽  
F. Boël ◽  
M. Hill

Vortex induced vibration is a major cause of fatigue failure in submarine oil and gas pipelines and steel catenary risers. Even moderate currents can induce vortex shedding, alternately at the top and bottom of the pipeline, at a rate determined by the flow velocity. Each time a vortex sheds, a force is generated in both the in-line and cross-flow direction, causing an oscillatory multi-mode vibration. This vortex induced vibration can give rise to fatigue damage of submarine pipeline spans, especially in the vicinity of the girth welds. In this paper, an integrated numerical framework is presented to predict and identify free spans that may be vulnerable to fatigue damage caused by vortex induced vibrations (VIV). An elegant and efficient algorithm is introduced to simulate offshore pipeline installation on an uneven seabed. Once the laydown simulation has been completed, the free spans can be automatically detected. When the fatigue screening for both inline and cross-flow VIV indicates that a particular span may be prone to vortex induced vibrations, a detailed fatigue analysis is required. Amplitude response models are constructed to predict the maximum steady state VIV amplitudes for a given pipeline configuration (mechanical properties) and sea state (hydrodynamic parameters). The vibration amplitudes are translated into corresponding stress ranges, which then provide an input for the fatigue analysis. A case study from the offshore industry is presented, and sensitivity analyses are performed to study the influence of the seabed conditions, where special emphasis is devoted on the selection of pipe soil interaction parameters.


Author(s):  
P. Temarel

The Loads Committee of the International Ship and Offshore Structures Congress (ISSC) critically reviews the state of the art of environmental and operational loads. Amongst these, elements more relevant to the offshore industry will be presented in this paper. These comprise wave-induced loads, including linear and nonlinear methods, multi-body interactions, slamming, green water, sloshing and rogue waves, cables and risers, vortex-induced vibrations, ice loads, fatigue loading and, verification and validation.


Author(s):  
D. S. Bhaskara Rao ◽  
R. Panneer Selvam ◽  
Nagan Srinivasan

Tension Leg Platforms (TLPs) are one of the best options for offshore industry in deep waters due to proven motion response characteristics. These are water depth sensitive structures and the motion responses in vertical plane motions (heave, roll and pitch) are critical for a TLP. Tension Based TLP (TBTLP) is a new concept and finds application in much deeper waters. A provision of a tension base at mid-depth results in an economical design of TLP. In fact, the TLP installed at a certain depth without any modifications can be made to be deployed in much deeper water depths by means of a tension base. In this paper, the concept of TBTLP is highlighted and hydrodynamic analysis of the chosen platform has been carried out using ANSYS AQWA package. The motion responses in terms of Response Amplitude Operators (RAOs) of TBTLP with one Tension Base in surge, heave and pitch have been obtained and compared with a TLP without a tension base.


Author(s):  
F. Redaelli ◽  
B. Skallerud ◽  
B. J. Leira

The present paper addresses fatigue crack-growth for free-spanning pipelines. The main sources of cyclic stresses which cause the crack-growth are vortex-induced vibrations (VIV) of the pipeline in the cross-flow and in-line directions. In the presence of initial weld defects, such cyclic stresses may lead to leakage and sudden fracture. The crack-growth process is modelled using so-called line-spring elements. These are matched with shell elements which are applied for modelling the pipe itself. The crack-growth is simulated by performing several simulations with different crack sizes. The shape of the crack also allowed to vary during the growth (i.e a/c-ratio). The static equilibrium position of the pipeline for a specific free span is first established by the non-linear Finite Element program ABAQUS. The line-spring elements are matched to interface with the shell elements which represent the pipe outside the region where the crack is located. Based on such simulations, the stress intensity factors at the crack-tip are computed. These calculations are performed for several different crack-sizes. Finally, the remaining fatigue life is estimated by means of fracture mechanics in terms of analytical and semi-empirical approaches.


Sign in / Sign up

Export Citation Format

Share Document