On Remaining Fatigue Life Fracture Mechanics Analysis of Free-Spanning Pipelines Using Shell and Line-Spring Elements

Author(s):  
F. Redaelli ◽  
B. Skallerud ◽  
B. J. Leira

The present paper addresses fatigue crack-growth for free-spanning pipelines. The main sources of cyclic stresses which cause the crack-growth are vortex-induced vibrations (VIV) of the pipeline in the cross-flow and in-line directions. In the presence of initial weld defects, such cyclic stresses may lead to leakage and sudden fracture. The crack-growth process is modelled using so-called line-spring elements. These are matched with shell elements which are applied for modelling the pipe itself. The crack-growth is simulated by performing several simulations with different crack sizes. The shape of the crack also allowed to vary during the growth (i.e a/c-ratio). The static equilibrium position of the pipeline for a specific free span is first established by the non-linear Finite Element program ABAQUS. The line-spring elements are matched to interface with the shell elements which represent the pipe outside the region where the crack is located. Based on such simulations, the stress intensity factors at the crack-tip are computed. These calculations are performed for several different crack-sizes. Finally, the remaining fatigue life is estimated by means of fracture mechanics in terms of analytical and semi-empirical approaches.

2020 ◽  
Vol 8 (6) ◽  
pp. 427 ◽  
Author(s):  
Fang Wang ◽  
Weicheng Cui

Safety analysis and prediction of a marine structure is of great concern by many stakeholders and the general public. In order to accurately predict the structural reliability of an in-use marine structure, one needs to calculate accurately the fatigue crack growth at any service time. This can only be possible by using fracture mechanics approach and the core of fracture-mechanics-based method is to establish an accurate crack growth rate model which must include all the influential factors of the same order of sensitivity index. In 2011, based on the analysis of various influencing factors, the authors put forward a unified fatigue life prediction (UFLP) method for marine structures. In the following ten years of research, some further improvements of this method have been made and the applications of this UFLP are carried out. In this paper, these progresses are reported and its underlying principles are further elaborated. Some basic test data used to determine model parameters are also provided.


1996 ◽  
Vol 118 (4) ◽  
pp. 193-200 ◽  
Author(s):  
S. H. Ju ◽  
B. I. Sandor ◽  
M. E. Plesha

Much research has been done on Surface Mount Technology (SMT) using the Finite Element Method (FEM). Little of this, however, has employed fracture mechanics and/or continuum damage mechanics. In this study, we propose two finite element approaches incorporating fracture mechanics and continuum damage mechanics to predict time-dependent and temperature-dependent fatigue life of solder joints. For fracture mechanics, the J-integral fatigue formula, da/dN = C(δJ)m, is used to quantify fatigue crack growth and the fatigue life of J-leaded solder joints. For continuum damage mechanics, the anisotropic creep-fatigue damage formula with partially reversible damage effects is used to find the initial crack, crack growth path, and fatigue life of solder joints. The concept of partially reversible damage is especially novel and, based on laboratory tests we have conducted, appears to be necessary for solder joints undergoing cyclic loading. Both of these methods are adequate to predict the fatigue life of solder joints. The advantage of the fracture mechanics approach is that little computer time is required. The disadvantage is that assumptions must be made on the initial crack position and the crack growth path. The advantage of continuum damage mechanics is that the initial crack and its growth path are automatically evaluated, with the temporary disadvantage of requiring a lot of computer time.


1981 ◽  
Vol 103 (2) ◽  
pp. 91-96 ◽  
Author(s):  
M. H. El Haddad ◽  
T. H. Topper ◽  
T. N. Topper

An elastic plastic fracture mechanics solution for short fatigue cracks in smooth and notched specimens is presented which admits plasticity by replacing the conventional stress term with a strain term and accounts for the propagation of very short cracks by the introduction of an effective crack length which is equal to the actual length increased by length l0, the length constant l0 is characteristic of the material and material condition and is calculated from the smooth specimen endurance limit and the long crack threshold stress intensity. Crack growth results for cracks in both elastic and plastic strain fields of notched specimens when interpreted in terms of this strain based intensity factor showed excellent agreement with elastic long crack data. This intensity factor when combined with a propagation model that includes all stages of crack growth also successfully predicted the total fatigue life of the smooth and notched specimens studied here. The predicted propagation life of elliptical and circular notched specimens is in all cases within 50 percent of the actual fatigue lives.


1982 ◽  
Vol 22 (01) ◽  
pp. 151-156
Author(s):  
Theodore Gottlieb ◽  
Tarlochan Mann

Abstract It is common practice to clad steel components with a relatively thin layer of a stainless material to prevent corrosion economically. Little, however, has been published regarding the effect of such cladding on fatigue published regarding the effect of such cladding on fatigue life in areas of localized high stress. Large valves that are pressure-cycled often and offshore equipment, such as pressure-cycled often and offshore equipment, such as risers, tensioners, and wellhead flanges that are loaded cyclically by ocean currents and waves, must be analyzed for fatigue life during design. Unlike storage vessels, drilling and completion hardware generally has areas of relatively high stress concentrations because of abrupt section size changes, threads, grooves for seals, bolt holes, and other stress-concentrating geometries. While yielding or rupturing is a function of bulk stresses, fatigue life is a function of peak stresses, which typically are highest on the surface of an area of stress concentration. It has been determined that both the metallurgical characteristics of the cladding and the pressure/load history can be varied to enhance or diminish significantly the fatigue life of a clad steel component. The results and conclusions of this study are based on laboratory studies. Axial fatigue tests (R=0.05) were performed using a side-notched fatigue specimen that produces combined axial and bending stresses in the notched area. Specimens of AISI 4130 (dt HRc 20) were tested unclad and with the notched area clad with Inconel 625 or AISI 316L. Each set of specimens was tested both unpreloaded and preloaded to produce localized yielding at the notched surface only.The findings of this study are applicable to components subject to failure by fatigue and corrosion fatigue and sour service steel components that become locally work-hardened either in service or during overload proof testing as required by most API specifications. Introduction Fatigue failure of a homogeneous, unflawed metal occurs in two stages:nucleation of a stable crack andcrack growth until failure occurs. The nucleation portion is the result of alternating strain of a magnitude portion is the result of alternating strain of a magnitude sufficient to cause the formation and the coalescence of dislocations to form a crack. Crack growth can be predicted by fracture mechanics techniques. predicted by fracture mechanics techniques. Although fatigue curves often are plotted with alternating stress on the abscissa and cycles to failure on the ordinate, it is actually the cyclic strain that determines fatigue life. Fatigue prediction methods therefore must relate calculated stresses to cyclic strain. Stress vs. strain relationships are complex and include at least the following variables: part geometry, grain size, microconstituents, cold working coefficient, direction of forces, magnitude of forces, and strength and modulus of the material. It is seen that fatigue is associated strongly with the metallurgy of the materials being tested. Purpose of Study Purpose of Study The purpose of this study was to develop data and evaluate an analytical technique to predict fatigue life of thick-wall, clad and unclad, pressure vessels in the long- and short-cycle fatigue mode. More specifically, data were generated to simulate high-pressure wellhead equipment fabricated from quenched and tempered low alloy steels. Claddings studied were the austenitic-nickel-base Inconel 625 and iron-base AISI 316L. Both these cladding materials have substantially different metallurgical properties from those of low alloy steel. Since fatigue failures generally result from peak surface stresses, nucleation of fatigue cracks will occur in the cladding. The cladding therefore controls the fatigue life of the vessel since crack nucleation comprises the majority of the total cycles compared to crack growth. SPEJ P. 151


1976 ◽  
Vol 190 (1) ◽  
pp. 571-584 ◽  
Author(s):  
A. P. Kfouri ◽  
K. J. Miller

SYNOPSIS The application of Griffith energy concepts to Elastic-Plastic Fracture Mechanics (EPFM) is investigated. An elastic-plastic finite element program is used to calculate the values of the Crack Separation Energy Rate, GΔ, corresponding to a variety of biaxial stress-strain states. The effect of the size of the crack tip plastic zone on the fracture stress is investigated and a relation is established between two non-dimensional parameters φ and ψ . The first parameter φ gives a measure of the ductility of the material while the second parameter ψ is related to the applied stress when brittle fracture occurs. The character of the φ, ψ dependence suggests that when a certain value of the ductility parameter φ is exceeded, brittle crack growth is no longer possible and the mode of crack extension must change to one of a ductile nature. The theoretical predictions of fracture toughness are favourably compared with the results of experiments. Calculated values of GΔ, the stress intensity factor, K, and Rice's path independent integral J are also compared and the applicability of these parameters to brittle, quasi-brittle and ductile fracture is critically discussed.


Author(s):  
Lun Qiu ◽  
Li Lee

The method of pulling a steel catenary riser (SCR) through a steel tube (termed as a pull tube) is common practice for deepwater riser tie back applications. Vortex-induced vibration (VIV) of such a system is complex. VIV analysis programs, such as Shear7 [1], are suitable only for a single, chain-like structure. The application of such a software tool in VIV design of the SCR-pull tube system requires careful consideration of a number of structural and hydrodynamic factors. This paper presents a methodology for VIV analysis of the combined structural system of the SCR with the pull tube. Firstly, the entire SCR-pull tube system is modeled with the finite element program Flexcom [2]. The modes are then calculated for the entire structure with program Modes [3]. Afterwards, the structural nodes are rearranged for VIV analysis with Shear7. The pull tube is secured on the platform through a number of guides on the truss structure of the hull. The diameter of the pull tube is much larger than that of the SCR, and the pull tube is much stiffer in bending than the SCR is. If the entire structure is analyzed with Shear7, the mode for the pull tube (a mode involving a large motion of the pull tube section), which is very high in order, would be embedded in the analysis. It makes sense to single out the pull tube mode for study as if it is the first mode. A computer program, named as V-Span [4] for subsea span VIV analysis, is used to analyze both in-line and cross-flow VIV of the pull tube. A numerical example is presented to demonstrate this methodology. This is a deepwater SCR, which has a diameter of 9 inches. The water depth is 6,300 ft. The pull tube is 640 feet long and 20 inch in diameter. Both the loop-eddy and background currents are analyzed. The fatigue damage resulted from both in-line and cross-flow VIV is estimated.


1995 ◽  
Vol 2 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Sang-Ho Lee ◽  
Ted Belytschko

The implementation and application of h-adaptivity in an explicit finite element program for nonlinear structural dynamics is described. Particular emphasis is placed on developing procedures for general purpose structural dynamics programs and efficiently handling adaptivity in shell elements. New projection techniques for error estimation and projecting variables on new meshes after fission or fusion are described. Several problems of severe impact are described.


Author(s):  
Kun She ◽  
J. P. Sadler ◽  
T. R. Tauchert

Abstract The static and dynamic optimal design of structural components fabricated with advanced composite materials are studied by combining the finite element method and optimization techniques. Different element types, loads, component structures and objective functions are investigated. Beams and torsion members are analyzed using the ANSYS finite element program and are optimized via an interface to an optimization software package. The particular element types used to model the composite components include beam elements with equivalent overall material properties and layered shell elements. The optimization variables include member cross sectional dimensions and composite lamina thicknesses and fiber orientations. The optimal results show significant improvement in deflection amplitude levels and dynamic settling times relative to conventional metals and nonoptimized composite materials.


Author(s):  
Pedro V. Marcal ◽  
Jeffrey T. Fong

For safe operation of high-consequence structures such as airplanes, ships, trains, chemical plants, electricity-generating units, nuclear reactors, oil and gas pipelines, and pressure vessels, periodic inspection using nondestructive evaluation (NDE) technology and a deterministic approach to modeling fatigue crack growth has been mandated by government in the energy and transportation sectors of the nation’s economy since the 1970s. Recent advances in web-based computing, direct measurement-based NDE, and a stochastic approach to remaining fatigue life cycle prediction model have made it possible to not only enhance the credibility of fatigue life prediction but also shorten the turn-around time between field-based NDE and office-based modeling, analysis, verification and integrity assessment back to the field for decision making. To illustrate this new concept in preventing structural failure and extending useful life of high-consequence systems, we first recount a lesson learned in the history of the deployment of the U.S. nuclear submarine fleet, where the emphasis was on the continuous monitoring of 100% of pipe and vessel welds from their initial placement to the discovery of tangible signs of fatigue damage way before the onset of service disruption. Using two crack length vs. fatigue life cycle plots, one being based on the deterministic and the other a stochastic model, we summarize the contrast between the two models in their ability to deliver a credible prediction of the remaining fatigue life cycle based on a periodic or continuous inspection mode. In conjunction with that summary, we answer an important question in designing an NDE-based inspection strategy, namely, whether the inspection should be periodic or continuous. We show in this paper that the key to the success of a continuous monitoring system for aging structure is an NDE capability in measuring not only the initial crack length and the initial crack growth rate, but also their standard deviations. We conclude with a remark that a continuous direct-measurement-based NDE inspection system, when coupled with a finite element modeling and analysis capability, is capable of monitoring not only surface but also subsurface cracks.


Sign in / Sign up

Export Citation Format

Share Document