Multieffects on Mixing Quality of an Active Micromixer

Author(s):  
Thien X. Dinh ◽  
Yoshifumi Ogami

The convective mixing performance of an active micromixer is analyzed by using computational fluid dynamics (CFD). The mixer consists of a Y-shaped channel and an N-paddle (3, 4, and 5) rotor with radius R suspended in the junction of the channel. Numerical simulations are performed for a wide range of rotation speed of the rotor, ω, and mean velocity in the mixer, U. The asymptotic mixing performance is investigated by means of Lagrangian particle tracking simulation, stretching of a material line, dispersive and distributive mixing efficiencies. The results show that the mixing performance depends on the combined variable ωR/U, whereas paddle number has ignorable effects. Physically, the convective ratio of rotation speed to mean velocity governs the mixing process in the mixer. Contrastively, paddle number affects significantly to pressure loss and fluid torque exercising on the rotor. The time-averaged fluid torque depends linearly on rotation speed regardless of flow rate. Pressure loss relates linearly to flow rate, negligibly to rotation speed. It shows that a smaller paddle number produces lesser pressure loss and fluid torque for the same mixing efficiency.

Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 695 ◽  
Author(s):  
Yunxia Wang ◽  
Yong Zhang ◽  
Zheng Qiao ◽  
Wanjun Wang

Homogeneous mixing of microscopic volume fluids at low Reynolds number is of great significance for a wide range of chemical, biological, and medical applications. An efficient jet mixer with arrays of micronozzles was designed and fabricated using additive manufacturing (three-dimensional (3D) printing) technology for applications in centrifugal microfluidic platforms. The contact surface of miscible liquids was enhanced significantly by impinging plumes from two opposite arrays of micronozzles to improve mixing performance. The mixing efficiency was evaluated and compared with the commonly used Y-shaped micromixer. Effective mixing in the jet mixer was achieved within a very short timescale (3s). This 3D printed jet mixer has great potential to be implemented in applications by being incorporated into multifarious 3D printing devices in microfluidic platforms.


Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


2002 ◽  
Vol 56 (12) ◽  
pp. 506-513 ◽  
Author(s):  
Dan Cascaval ◽  
Corneliu Oniscu ◽  
Anca-Irina Galaction ◽  
Fiorina Ungureanu

This paper presents the experiments on mixing efficiency for aerated media for a laboratory stirred bioreactor with a double turbine impeller. The effects of stirrer rotation speed, air volumetric flow rate and stirrer position on the shaft on mixing time for aerated water and simulated broths (CMCNa solutions) were analyzed. Compared to non-aerated broths, the results indicated that the variation of mixing time with the considered parameters is very different, due to the complex flow mechanism of the gas-liquid dispersion, a mechanism which is changed by changing the broth properties or fermentation conditions. Using the Statistics Toolbox of MATLAB some correlations between the mixing time and rotation speed, air volumetric flow rate and stirrer position on the shaft were established. The proposed equations agree well with the experiments, the average deviation being ?9.02%.


2011 ◽  
Vol 467-469 ◽  
pp. 2013-2017
Author(s):  
Hsiang Chen Hsu ◽  
Hsi Chien Liu ◽  
Cheng Jiun Han

A microfluidic multi-cylindric rapid micromixer is fabricated in the present paper. The key features in the presented MEMS-based microchannel design are (1) micro pump (2) Y-junction type channel (3) cylindric obstacle (4) notch with the edge of sharp teeth. Two different fluids (DI water and red ink) were pumped and injected into Y-type channel, and the fluids were broken-up by a cylindric obstacle in the center of tapered microchannel. The chaotic convection occurs in the mixing channel behind the cylindric obstacle. The mixing index is defined to qualify the mixing efficiency, which demonstrates the outlet notch with sharp teeth along the sidewall plays an important role for mixing effects. The developed micromixer can enhance mixing using the mechanisms of diffusion and convection for wide range of Reynolds number (0.01<Re<100). Parametric studies for volumetric flow rate include the number of cylindric obstacles, the number of notches with sharp-teeth and the width of microchannel. Preliminary results demonstrate that the mixing index reaches the desired effect (<0.1) within 0.08 second when the inlet fluid velocity is 0.49992m/s, i.e. volumetric flow rate is 1200μl /min. The presented device is faster than most of reported micromixers.


Author(s):  
Yubo He ◽  
Qingzhen Yang ◽  
Huicheng Yang ◽  
Saile Zhang ◽  
Haoqi Yang

Abstract Serpentine inlet is widely used in military and civil aircraft due to its good stealth performance. However, it generates a high total pressure loss and swirl distortion which significantly affects the performance and the stability of the compressor. In order to improve the quality of the flow field at the aerodynamic interface plane (AIP), a flow control is required inside the serpentine inlet. The objective of this paper was to study the effectiveness of the blowing active flow control on reducing the swirl distortion and on improving the total pressure recovery at the AIP, by reducing the low-momentum flow in the serpentine inlet. The mechanism of the blowing control and the effect of the design parameters (i.e. blowing angle, blowing position and blowing flow rate) on the aerodynamic performance at the AIP were studied. The optimal solution was applied to the full flow path of the serpentine inlet and the fan-stage. The numerical results showed that the quality of the flow field at the AIP were effectively improved by blowing high-energy airflow into the boundary layer of the serpentine inlet. The blowing position had a high influence on the blowing effect, and upper wall blowing scheme obtained greater benefits than lower wall blowing scheme and combination blowing scheme. In addition, the blowing angle should be selected to avoid the high-energy air from pipes mixing with mainstream in the serpentine inlet which will result in an additional total pressure loss. When the ratio of the blowing mass flow rate to the designed mass flow rate of the serpentine inlet was about 1.5%, the swirl distortion on the AIP reached a minimum value, which then did not show a significant difference in performance with blowing ratio increased. When the upper wall blowing scheme was adopted with a blowing angle of 6 degrees and a blowing ratio of 1.5%, the AIP aerodynamic performance achieved the highest improvement, with an increase of the total pressure recovery factor by about 1%, and a decrease of the circumferential total pressure distortion and the swirling distortion by 60% and 61%, respectively. With the optimal control scheme, the area of the low-pressure region near the upper wall was remarkably reduced, and the performance of fan-stage was improved, with an increase of the pressure ratio by about 1.5%, and the efficiency of the single-stage compressor by about 3.1%, respectively.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
A. Banerjee ◽  
A. K. Nayak ◽  
B. Weigand

Abstract This paper focuses on the comparative electrokinetic micromixing of non-Newtonian fluid in cylindrical microchannels with surface potential heterogeneity due to sudden constriction/expansion. In numerical simulations, the rheology of the aqueous solution is considered to follow power-law characteristic. Based on the Poisson–Nernst–Planck model, the simulations are performed to investigate the mixing efficiency and pressure drop for constricted and expanded configurations over a wide range of the flow behavior index, potential patch strength, and geometric parameters. The results show that, irrespective of geometric configurations, the mixing efficiency can be improved significantly by increasing the flow behavior index, geometric parameters, and the overpotential patch strength. In addition, it is also revealed that the constricted geometry yields better mixing as compared to the other configuration, but the average pressure drop shows reverse characteristics. Thus, a parametric relationship is tried to be established between mixing efficiency and pressure drop for both these configurations to propose an effective and efficient micromixer, which can produce maximum possible mixing efficiency with minimum pressure drop.


Author(s):  
Thien Xuan Dinh ◽  
Yoshifumi Ogami

Mixing performance of an active mixer which mixes two fluids by three-dimensional flow surrounding a rotating shuttlecock rotor in continuous flow is numerically investigated. The mixer consists of a step contraction-expansion microchannel and a shuttlecock micro-rotor placed in the step. The obtained results show that mixing quality of solution does not depend on neither rotation speed nor mean velocity in the mixer, but rather on the ratio of tip paddle velocity of the rotor to the mean velocity (i.e. Strouhal number). Streaklines demonstrate that two fluids from the inlet can penetrate into the space between the paddles of the rotor, and then are mixed here before flowing to the exit channel. In small Strouhal number (∼10) cases, two fluids are twisted 90 degrees after passing the rotor region. In the other words, mixing in downstream flow behind the rotor takes place in the height instead of the width of the exit channel, which makes the mixer applicable for channels with high aspect ratio of the cross section. It is observed that mixing is dominantly enhanced in the rotor region and increasing Strouhal number results in faster mixing in the mixer.


2020 ◽  
Vol 81 (8) ◽  
pp. 1646-1657 ◽  
Author(s):  
D. Dapelo ◽  
J. Bridgeman

Abstract To date, mixing design practice in anaerobic digestion has focussed on biogas production, but no adequate consideration has been given to energy efficiency. A coherent, comprehensive and generalized strategy based on computational fluid dynamics (CFD) modelling is proposed to improve mixing efficiency of a full-scale, unconfined gas-mixed digester for wastewater treatment. The model consists of an Euler–Lagrange (EL) model where biogas bubbles are modelled as the Eulerian dispersed phase, and non-Newtonian sludge as the Lagrangian continuous phase. Robustness tests show that mixing predictions are independent of bubble size. The CFD strategy comprises the assessment of different mixing geometries and a range of input gas flow rates. Quantitative results show that simple retrofitting measures are able to achieve a significant improvement in the degree of mixing with reduced mixing times, and consequently recommendations for best mixing geometry and gas flow rate are given. A generalization to a generic digester is discussed in a form that is readily usable by professionals and consultants.


Sign in / Sign up

Export Citation Format

Share Document